1. Introduction

The usage of machine learning techniques for on-line time series classification is the main
topic of this work. The motivation to deal with this task and its central challenges are
described in Section 1.1. Major contributions of this thesis are summarized in Section 1.2.

1.1 Motivation

The classification of temporal data plays a central role in many fields, e. g., medicine, finance,
speech recognition or monitoring of industrial processes. Approaches that are frequently ap-
plied in temporal classification tasks typically use statistical models like Auto-Regressive
Moving Average (ARMA) or Hidden Markov Models (HMM). In cases where it is not possi-
ble to build accurate models that describe the considered time series the classification task is
normally solved by using empirically designed expert systems. In recent years the interest in
applying machine learning techniques to time series has grown, mainly driven by enhanced
computational resources which are required for the large amount of data that has to be
processed when dealing with time series. Thus, the difficult task of finding appropriate sta-
tistical models or the hand-crafted design of expert systems can be replaced by well-known
machine learning methods or by new statistical learning algorithms that are emerging in
order to deal with temporal data. Machine learning procedures automatically “learn” the
mapping implementing the classifier from observations in such a way that the main task
is the acquisition of representative observations rather than the design of analytical mod-
els. Hereby, the “learning” is accomplished by solving optimization problems in order to
obtain the desired classification result for the available observations. Taking into account
that most learning systems can be improved by integrating domain knowledge about the
problem at hand, machine learning classifiers normally achieve a better performance than
expert systems, although they can be designed with less effort. This makes machine learning
an attractive approach to tackle classification problems.

Since time series are complex data structures the common framework used in machine
learning for classification can not be applied straightforwardly and modifications must be
included in order to take the temporal aspect into account. The common machine learning
framework assumes that an object which has to be classified is described by features. Each
feature represents a characteristic of the object. When dealing with temporal data, the object
to be classified is described by trajectories which are represented in this work as time series.
It is inappropriate to treat each sample in the series as a feature of the object to be classified
for two reasons: firstly, this would lead to a huge number of features and secondly, it is rather
the interdependence between samples that contains the characteristic information which is
required for classification and should be integrated into features. In this work possibilities
to represent time series in such a way that the common machine learning framework can be
applied will be discussed.

The main difference of this thesis compared to other works that deal with the application
of machine learning techniques for the classification of temporal data is the fact that the
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time series considered here can change their class label over time so that the classification
problem covers two main tasks: the detection of those time instances when the class label
changes and the correct assignment of the class label. Works in the technical literature that
deal with the application of machine learning to time series classification only consider the
latter task and assume that the series are already divided into segments in such a way that
each segment belongs to just one class. For practical applications including dynamic systems
that generate time series which must be classified the former task is also highly important
and therefore will be covered in this thesis. Whenever a new sample of a time series becomes
available it has to be decided in real-time whether a class change has occurred and if yes,
which one. Thus, the task will be called on-line time series classification.

Although many machine learning algorithms are able to solve a large number of classi-
fication problems that appear in practical applications with high accuracy they have the
drawback of not being interpretable. For most classification tasks there is a tradeoff between
interpretability and low error rates which stems from the inability of humans to imagine
arbitrary hypersurfaces in high-dimensional spaces. Since interpretability is often desired as
in case of safety critical applications the design of interpretable classifiers is an important
issue that will be treated in this work.

The main application that will be discussed is the design of classifiers for detection and
categorization of car crashes. The aim hereby is the deployment of safety systems, e. g., belt
tensioners or airbags, at time instances where the best-possible protection of passengers is
assured. This is a safety critical application where a decision must be taken based on temporal
data stemming from sensors, e.g., deceleration or pressure sensors which are incorporated
in modern cars. State of the art algorithms for this task are expert systems which rely
on empirical experience and require lots of hand-crafted “trial and error” steps for each
car type. Therefore, applying machine learning procedures represents a means to reduce the
development costs and to improve the flexibility and performance of the employed algorithms.
Solving the car crash classification problem with machine learning techniques requires the
usage of all topics that were mentioned above: a suitable representation of time series, the
detection of those time instances when a class change occurs, i.e., when to deploy safety
systems, a high accuracy, i.e., the correct decision about what safety systems to deploy, and
interpretability.

1.2 Outline and Major Contributions of the Thesis

The thesis is divided into two main parts. The focus of the first part that is covered by
Chapters 2 and 3 is the classification task based on machine learning techniques whereas the
second part—Chapters 4 to 7—deals with temporal data, the possibilities to classify time
series using machine learning procedures, and the car crash application.

Chapter 2 starts by introducing the basic concepts of machine learning. Hereby, the gen-
eralization ability of classification systems is treated in more detail, i.e., the property of
classifiers to take the best decision not only for the data that has been used in the design
phase but also for new, unseen data. In this context the bias-variance framework is very
useful since it gives insight into the tradeoff that must be found when choosing the complex-
ity of the model that is used to learn the underlying process generating the data. Since a
main aim in the design of classifiers is a good generalization ability also methods that can be
applied to measure the performance will be discussed in this context. Chapter 2 continues
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by presenting important machine learning algorithms. The aim is to convey the basics of
some learning algorithms that have proven their suitability on a large number of practical
applications and to introduce the relatively new field of ensemble learning. In this part of
the thesis an approach to explain the good generalization ability of ensemble techniques
for classification tasks using the bias-variance framework is presented. Similar approaches
exist for regression tasks but there the bias-variance framework is different. Having stressed
the advantages of ensemble techniques a special representative, the Random Forest (RF)
algorithm, is introduced since it is the basic algorithm that is used throughout the thesis to
design classification systems and to develop new algorithms. The success of a classification
system does not only depend on the classification algorithm but also on the way how the
data is represented for the algorithm. Thus, the so-called feature extraction is highly impor-
tant, i. e., the extraction of a small but representative set of attributes that facilitate a good
classification performance. The last part of Chapter 2 covers this topic.

A major contribution of this thesis is described in Chapter 3 where a possibility to de-
sign interpretable Generalized Radial Basis Functions (GRBF) based on the RF kernel is
introduced. After showing how the RF kernel can be deduced from the kernel of a single
decision tree, the similarity measure described by the RF kernel is used during the con-
struction of GRBF classifiers in order to assure a good generalization performance. GRBF
classifiers have some advantages that other classifiers do not have: they allow interpretability
which is important in safety critical applications and they offer the option to reject decisions.
Both properties will be used in the second part of the thesis for the car crash application.
Chapter 3 describes in detail how GRBF can be constructed using the RF kernel and shows
how interpretability can be achieved by using a constrained optimization step. Moreover,
it is presented how the number of generalized radial basis functions can be reduced in the
GRBF classifier while assuring a good classification performance. The chapter ends with
experimental results that affirm the advantages of the proposed classification algorithm.

Chapter 4 describes the temporal classification problem, elaborating on the possibilities to
represent temporal data, the difficulties that arise when dealing with the topic and possible
ways to handle it. Some common approaches for the classification of temporal data are
reviewed. Since the usage of suitable similarity measures between time series is a possible
access to the classification task the chapter presents some standard measures and shows how
these measures can be applied to construct class-specific prototypes. In Chapter 4 a new
similarity measure is introduced which will be called Augmented Dynamic Time Warping
(ADTW) similarity. Due to its property to capture both the similarity in shape as well as
the duration of time series the ADTW similarity represents an adequate measure for the
car crash application. In the final part of the chapter some possibilities to generate global
or local features from time series are reviewed and a new type is introduced that will be
called event-based features. The essence of event-based features is the usage of classifiers in
the generation step in such a way that application specific events can be detected and the
time instances when these events occur are incorporated into features.

The main application that is used in the second part of the thesis to evaluate the techniques
that are developed in this work is presented in Chapter 5. The classification of car crashes is
a challenging task for a couple of reasons. Firstly, the task involves two classification steps:
the detection of a suitable time instance when to deploy safety systems and the decision
about what safety systems to activate. Secondly, causality must be taken into account, i.e.,
at time instances when a decision must be taken only sensor signals up to this time stamp
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are available, which leads to time series of different length. Thirdly, it is a safety critical
application which comes along with high demands on the classification performance while
favoring interpretable classifiers. The chapter describes how the performance of car crash
classification systems can be measured. Both the time instance when to deploy as well as
the decision about what safety systems to activate depends on the crash severity. Thus,
measuring the performance must evaluate both aspects.

In Chapter 6 a contribution of this thesis to the problem of on-line time series classification
is presented. The approach is an expansion of the RF algorithm to temporal data which is why
it will be denoted Scenario-Based Random Forest (SBRF) algorithm. SBRF comes along with
all advantages of the RF algorithm making it possible to compute an honest estimate of the
classification performance without putting aside a subset of observations from the available
data set. A highly important property of the SBRF algorithm for practical applications is
its ability to perform feature selection. Reducing the number of features that are used in
the classification task not only decreases the computational load but it also facilitates a
good generalization ability. On-line classification using the SBRF approach is performed by
computing at each time stamp a feature vector and assigning this feature vector to a class.
The chapter ends by applying the SBRF algorithm to the car crash classification task. The
results for two data sets that stem from real car crashes are shown.

In Chapter 7 the temporal time series classification problem is explicitly divided into
two subtasks: detecting time instances when class changes possibly occur and assigning class
labels. The former subtask segments a time series into intervals that belong to the same class
and the latter assigns class labels to the segments. In contrast to the SBRF approach, here
the label is not computed at each time instance but only when the segmentation classifier
signals a possible class change. The construction of linear segmentation classifiers is discussed
and than adapted to the car crash classification task. In the final part of the chapter two
labeling classification techniques are applied to the car crash datasets. The first is realized
using GRBF classifiers that are constructed as described in Chapter 3 and the second using
the ADTW similarity measure from Chapter 4.

The thesis ends with Chapter 8 where the presented methods for the car crash application
are compared and aspects for future work in the field of on-line time series classification
using machine learning techniques are discussed.

1.3 Notation

Throughout the thesis vectors and matrices are denoted by lower and upper case bold letters.
Random variables are written using sans serif fonts. The matrix I,, is the n x n identity
matrix, e; its ¢-th column, and 0,, the n-dimensional zero vector. The symbol “x” denotes the
element-wise multiplication, tr{-} the trace of a matrix, E, {-} the expectation with respect
to x, (+)T transpose, |-] floor, [-] ceil, O(+) the Landau symbol, and ||-|| the norm of a vector.
A list of the most important symbols that are used in the thesis can be found in Appendix B.
Expressions are emphasized by writing them in italic type.
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The branch of science that deals with the automatic discovery of regularities in data through
the use of computer algorithms is called machine learning. If the discovery of regularities in
data is not necessarily coupled to the use of computers one talks about statistical learning.
Machine learning plays an important role in the areas of data mining, artificial intelligence,
statistics and in various engineering disciplines. The focus of this thesis lies on the latter,
aiming to use machine learning for the design of technical systems that have to react to
signals coming from the environment by tuning the parameters of an adaptive model in such
a way that an application-specific behavior is realized.

The first section of this chapter introduces the basics underlying statistical learning. Sec-
tion 2.2 presents state of the art algorithms for machine learning with a focus on linear
basis expansion models, Classification and Regression Trees (CART), and the Random For-
est (RF) algorithm since these methods are the basis for techniques that are developed later
in the thesis for the task of temporal classification. Section 2.3 addresses the problem of
finding the most compact and informative representation of data which is then used by a
machine learning algorithm to realize the desired behavior.

2.1 Basics of Statistical Learning

Many relations that are found by statistical learning methods in data can be represented
in the form of classification or regression functions. Classification and regression aim at
estimating values of an attribute of a system based on previously measured attributes of this
system. Given a set of measured observation attributes v = [vy,...,vn/|T € RY ', statistical
learning methods estimate the values of a different attribute y. If y takes on continuous
numerical values, i.e., y € R one talks about regression and if it takes on discrete values
from a set of K categorical values, called classes, i.e., y € {c1,...,cx} one talks about
classification. Often a preprocessing of the observation vector v is performed in order to
simplify the mapping

f:RY SR, v—y for regression and
f: RN

!

— {1, ek}, vi—y  for classification. (2.2)

Preprocessing plays a very important role being a possibility to introduce a priori knowledge
about the considered machine learning problem. This preprocessing transforms the observa-
tion vector v into the so-called feature vector & € RY. Defining feature vectors is the most
common and convenient means of data representation for classification and regression prob-
lems. A pair (x,y) is called a pattern, & the “input” and y the “output” or “target”. Because
the measured attribute values are subject to variations which often cannot be described de-
terministically, a statistical framework must be adopted [Vid03]. In this framework, @ is the
realization of the random variable x and y of the random variable y. One can think of the
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mapping from v to y or the mapping from x to y as a black box representing the process of
interest.!

In machine learning one is interested both in generating from the observation v a feature
vector x that is suitable for the application at hand and in estimating the mapping from x
to y using a set of M already known correspondences, the so-called training set?

D ={(z1,%1), -, (®ar,ym) }- (2.3)

Whereas most of the literature focuses on finding an estimate of the mapping from x to vy,
i.e., on computing a suitable mapping

f:RY SR, x—y, for regression and (2.4)

f:RY = {c),...,cx}, x—y, for classification,

it should be noted that for a good performance of the learning system, which enables to
predict accurately the output y for a new unseen measurement vector v, the construction of
the feature vector x is extremely important. Fig. 2.1 shows that the computed output y can
only be a good estimate of the target y corresponding to v if both the feature extraction
and the mapping f are chosen properly. The topic of generating suitable feature vectors

Feature X
Extraction

Learning system

Figure 2.1: Learning system

is discussed in Section 2.3. The current and the following section focus on computing the
mapping f.

In order to determine a suitable mapping f, a measure for the quality of the mapping is
required. Based on statistical decision theory, not the quality but the lack of quality of f
is measured. Firstly, a loss L(y,y) must be defined which assigns a cost to the prediction
y = f(x), knowing that the true value is y. The measure for the lack of quality is the
prediction risk R(f)—also called generalization error—which is defined as the expectation
of L(y, f(x)) over the x,y-space. For regression one obtains

R(f) = By {L(y. f(x))} = / / Ly, (@) p(x = x,y = y) dyda, (2.6)

RN R

n regression the mapping performed by the black box can be modeled by y = fiue(X) + € where ¢ is
noise and fiue the noiseless mapping from x to y. In classification the mapping can be represented by
Y = faiser (firue(X) + €), where faiser maps the real valued expression fiue(X) + € to the classes cg.

2This kind of learning problem is called supervised learning because in the training set to each input vector
,, the corresponding target y,, is known. In unsupervised learning only a set of feature vectors without
their corresponding targets is available and instead of predicting the output for an unseen input the task
changes to describing how the data is organized or clustered.
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where p(x = @,y = y) is the joint probability density function of x and y. For classification
the risk is defined as

RU) = By (LG 100} = [ S Llet f@)plx =y =a)de. @7

In this framework, the aim in machine learning is to find the function fg(x) which minimizes
the prediction risk R(f)

fe = arg;nin {R(f)} (2.8)

The function fg(x) is called the Bayes regression function or Bayes classifier, respectively.

Commonly used loss functions in regression are the absolute error L(y, f(x)) = |y — f(x)|
or the squared error L(y, f(x)) = (y — f(x))? whereas in classification problems all possible
values of the loss L(y, f(x)) can be stored in a K x K matrix. Often the loss for classification
is chosen to be the 0/1-loss

0, if y=f(x)
£l 5) = 1= aly f0) = { 1 0T (29
where §(-,-) is a function that generates the output 1 if its arguments are equal and 0
otherwise.
The probability density functions are normally not known in practical applications and
therefore fg(x) cannot be computed. Thus, the empirical risk is introduced which defines a
measure for the lack of quality of f(x) based on the training set D

emp(f D) M Z LY, [(xm)). (2.10)

The empirical risk from (2.10) is an unbiased estimate of R(f) obtained from the training
set D. Learning procedures can now be applied in order to find an estimate of the mapping
from x to y by minimizing Renp(f, D).

2.1.1 Parametric and Nonparametric Techniques for Classification

The joint probability density p(x = @,y = ¢;) offers a complete summary of the uncertainty
associated to the random variables x and y, such that the knowledge of p(x = @,y = ¢)
allows the computation of the optimal classifier fg. An arbitrary classification algorithm
implementing the mapping f segments the input space RV into regions X}, in such a way
that all inputs x € X, are assigned to the class ¢,. Therefore, the prediction risk from (2.7)
can be rewritten as

R(f) =Exy {L(y, f(x ZZ/E Ce,Co)p(x = x,y = ¢ )de, (2.11)

k=1 (=1 Xy

with L(cy, ¢;) representing the costs of assigning an input x to the output ¢, when the true
class is ¢. During the design of a classification algorithm one aims at choosing the regions
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Xy in such a way that the prediction loss from (2.11) is minimized. As a consequence the
regions X; emerge by minimizing for each € RV the cost function S5 | £(cy, f(z))p(x =
@,y = ¢) leading to the Bayes classifier

fo(x) = argmin {Z Ller, f@)p(x =@,y = ck>} (2.12)

f(=)

= argmin {Z L(ck,co)ply = cxlx = m)}, (2.13)

“ k=1

since the common factor p(x = ) can be eliminated.®> Assuming the 0/1-loss from (2.9) the
Bayes classifier can be simplified, resulting in the so-called Mazimum-A-Posteriori (MAP)
classifier?

Suap(x) = argmax {p(y = c/|x = x)}. (2.14)
()
If additionally the priors p(y = ¢x) are equal for all classes the MAP decision rule can be
further simplified to the so-called Maximum Likelihood classifier®

fur(x) = argmax {p(x = x)|y = ¢} (2.15)
Ce

In practical applications the probabilities that are required for the ML, MAP or Bayes
decision rule are normally not known. Nevertheless, in some applications parameterized forms
of the underlying densities p(x = @,y = ¢;) or p(x = x|y = ¢) are available, which makes it
possible to use the training set in order to estimate the values of unknown parameters in the
distributions. Then, based on the computed densities, one of the optimal decision rules from
(2.13), (2.14) or (2.15) is applied. This approach is called a parametric classification method.
On the other hand, if one uses methods for classification that do not require knowledge of
the forms of the probability distributions, the approach is said to be nonparametric. A
possible way to perform classification by applying nonparametric techniques is to estimate

3 According to Bayes rule the joint probability density can be decomposed into

p(x =m,y = cx) = ply = ck|x = z)p(x = z).
4The MAP classifier results from the simplification
K
fB(x) = argmin {Z(l — ek, co))ply = cplx = :c)}
K K
——M@MM{EZMy—cMX—w)—E:O—5@MWDMy—cMX—aO}—a@mmdpw—weX—wﬂ-
c Ce

‘ k=1 k=1

5Due to Bayes rule the MAP classifier can be simplified for equal priors:

{MX=wy=wmw=%)

L } — arganax {p(x = @)ly = 1)

SuL(x) = argmax {p(y = ¢¢|x = x)} = argmax
cy Ce
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p(x = ¢,y = ¢) or p(x = x|y = ¢;) without using any model of the densities, e.g., with
kernel methods, and then to take a decision based on the estimated densities and one of the
Egs. (2.13), (2.14) or (2.15).

One of the fundamental problems in statistical learning is the so-called curse of dimen-
sionality which states that with increasing dimensionality of the input space it becomes
harder to construct accurate statistical models. A manifestation of the curse of dimension-
ality that can be easily remembered is the fact that the sampling density is proportional to
MYN where M is the size of the training set and N the dimensionality of the input space.
If one divides a region of the input space into regular cells, then the number of cells grows
exponentially with the dimensionality of the input space and as a consequence one needs an
exponentially large number of examples in the training set to ensure that the cells are not
empty. Therefore, the methods that are applied in statistical learning use assumptions that
lie beyond the observed data to perform well in high dimensional spaces. More details on
the curse of dimensionality can be found in [Bel61] or [HTFO01].

Almost all machine learning procedures that are used in practice are nonparametric tech-
niques and some of them are presented in Section 2.2. When considering a classification
problem the structure in the observed data is a result of the fact that the data is produced
by a source which has certain statistical properties in such a way that the generated ob-
servations v do not fill out the whole input space RN'. Moreover, observations v which lie
close to each other with respect to a certain metric that is determined by the data source
also belong to the same class. Nonparametric procedures exploit these facts by specifying
metrics for measuring the neighborhood in the input space. Kernel methods or CART ex-
plicitly specify the metric, whereas methods based on linear combinations of basis functions
implicitly define a metric. It is very important to know that all methods that aim to escape
the curse of dimensionality have explicitly or implicitly defined a metric for measuring the
neighborhoods. This metric does not allow the neighborhood to be simultaneously small in all
directions [HTFO01]. Thus, every nonparametric technique makes intrinsic statistical assump-
tions about the data but in general it can not be predicted in advance if these assumptions
are valid, i.e., if the algorithm is suitable for the considered classification task. A frequently
adopted approach in machine learning is to check which of the available classifiers performs
well, in such a way that the most adequate algorithm from the cost and performance point
of view can be chosen.

2.1.2 Learning and Generalization in Classification Tasks

The aim of a machine learning algorithm is to find a “good” approximation of the mapping
from x to y. The approximation is “good” if it generalizes well, i. e., if it represents the under-
lying systematic properties of the data such that the prediction loss is small. In this context
the question arises whether a classification method is superior or inferior to other methods,
if no prior assumptions about the nature of the classification task are made. The answer to
this question is given by the no free lunch theorem which states that there are no context-
independent or usage-independent reasons to favor one classifier over another [Sch94]. A
superior classifier can only exist if the probability over the class of problems is not uniform.
If an algorithm is superior to another it is due to the fact that its intrinsic assumptions fit
the particular problem better. The no free lunch theorem is an essential theoretical result
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since it states that for a new classification task one should focus on the prior knowledge that
one has about the process generating the data.

2.1.2.1 Bias-Variance Decomposition

In the following the so-called bias-variance framework will be introduced to measure the
suitability of a learning algorithm for a specific classification problem. Colloquially, the bias
measures the suitability of the chosen learning model for the problem at hand and the
variance the specificity of a realization of the learning model. Given a certain type of classifier,
e. g., neural networks or CART, both bias and variance can be influenced when designing the
algorithm, but the two terms are not independent, a decreasing bias leading to an increasing
variance and vice versa. This tradeoff is discussed in detail below because it represents a key
to understand the generalization ability of statistical learning algorithms.

By deciding to use a certain type of machine learning algorithm, e. g., neural networks or
CART, one chooses the family of functions—also called model space—to which f belongs. If
the model space is too large, f can be determined based on the training set D in such a way
that the empirical risk is very small but the total risk R(f) is large. This is called overfitting
and the chosen model f has a high variance.® Intuitively, a model has a high variance if two
different training sets D; and D, which are produced by the same source lead to significant
different mappings f. On the other hand, if the mapping f differs significantly on average
over the training sets from the optimal model fg, then the learning model f has a high bias.
This may occur for example if the model space is too small and the function f does not have
the flexibility to estimate the optimal mapping from x to y.

Although regression is not the focus of this work, the bias-variance decomposition of the
prediction risk for regression tasks will be introduced since it is required at various places
in the thesis. In regression the most widely used loss function is L(y, f(x)) = (y — f(x))?,
leading to the minimization of the mean squared error. With this loss function and taking
into account that f(x) is constructed based on a random training set D, the prediction risk
can be decomposed as”

Exyo {(y = F(x,0))*} =Eu { By {y*} — f5(x)?} + Ex { (5(x) — Boi {f(x,D)})?}
= Ex{ile(x)) eb:Ex{<b\irasw{9})2}
+\EX {ED|X {(f(X, D) - ED|x {f(x> D>})2}}’ (2'16>

ey=Ex {varﬂx{y}}

where the optimal solution fg(x) is the conditional mean estimator Ey, {y}. This decom-
position can be found in Appendix A.1. Whereas the first term on the right hand side, the
expectation over the so-called irreducible local error ile(x), cannot be influenced and is due
to the irreducible noise in the data, the bias and the variance can be changed by the choice of
f. The bias measures the difference between the Bayes model fg(x) and the average model
Ep {f(x,D)}. The variance measures the dependency of f(x, D) on the particular realization
of D. From this additive decomposition in bias and variance it is clear that one should design
the function f(x,D) in such a way that both bias and variance are low.

6Since f(x) depends on the random training set D, it will be denoted as f(x, D) in the following.
"To cancel out the dependency of f(x, D) on the training set, (2.6) and (2.7) have to be extended by taking
also the expectation over the D-space.
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The bias-variance decomposition for classification is not equivalent to the bias-variance
decomposition for regression since the loss function and thus the average error rate are defined
in different ways. Whereas in regression one uses L(y, f(x)) = (y — f(x))?, in classification
the commonly used loss function is the 0/1-loss L(y, f(x)) = 1—=4(y, f(x)). With the 0/1-loss
the prediction risk for classification is

Exyp {L(y, f(x,D))} = Exy {Epjxy {1 — oy, f(x, D))} }
= Ex {Ey|x {ED|x,y {1 o 5()’7 f(X7 D))}}}

_F, {1 ~ > Eop {0(cks f(x, D))} ply = ck|x>} S @)

k=1

There are a variety of bias-variance decompositions for classification in the literature which
try to decompose the prediction risk when using the zero-one loss. An overview on these
decompositions can be found in [Geu02] and three of them will be described in the following.
An intuitive way to decompose the prediction risk in a bias and a variance term will be
discussed first. The equivalent to the irreducible local error from (2.16) can be set to

ile(x) =1 —p(y = fe(x)[x), (2.18)

with the Bayes classifier being [see (2.8) and (2.17)]

fe(x) = argmax {p(y = cx|x)}. (2.19)

Ck

The equivalent to the bias error from (2.16) can be defined as

biasgx{y} = 1 — 0(fB(X), fmaj(X)), (2.20)

where
fmaj(x) = arggnax{EmX {5(Ckaf(x’ D))}}u (221)

with other words the classifier choosing that class for which the majority among the distrib-
ution of classifiers vote which were built based on the distribution of the training set D. The
expectation Ep|x {0(ck, f(x,D))} is equal to the probability that a random realization of D
leads to f(x,D) = ¢, i.e.,

Bow (0(es S DD} = [ pO=DID = po(f(xD) =) (222)
D: f(x,D)=cy

In order to find an expression for vargx{y} which measures the variation of f(x,D) with
respect to the training set D the following intuitive definition can be used

vary{y} = 1 = Epjx {0 (fmaj(x), f(x,D))} = 1 = pp(f (X, D) = fmaj(x))- (2.23)

Although the variance from (2.23) is a measure of the variability of the prediction, the
decomposition of the local average error Eyx {Ep {1 —d(y, f(x,D))}}, into the terms from



