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Chapter 1

Introduction and background

In this thesis, GaAs-based edge-emitting diode lasers possessing a lateral design whose
changes in longitudinal direction were investigated. This was done by comparing the re-
sults of simulations with those of experiments. In this chapter, the reader is introduced
to the motivation and idea behind this work.

Edge-emitting GaAs-based diode laser

The realization of the first laser diodes was reported in 1962 by several groups, only
two years after Theodore H. Maiman built the world’s first laser at Hughes Research
Laboratories [1–4]. These GaAs and GaAsP-based homojunction lasers suffered from
high optical losses. Consequently, the devices had to be cooled and could only be op-
erated in pulsed mode. However, several advances in the epitaxial compound semicon-
ductors growth first enabled the realization of GaAs/AlGaAs double heterostructure-
based lasers in 1970, enabling continuous-wave (CW) operation at room temperature,
and subsequently, the development of quantum well-based separate confinement het-
erostructure lasers [5, 6].

A further significant leap towards high-performance GaAs-based diode lasers was
achieved with the introduction of strained quantum wells. The strain is introduced by
slight lattice constant differences in the order of 1% of a thin layer to its surrounding
material. If the corresponding layer thickness is restricted to a few nm no dislocations
form. The resulting strained quantum wells show an increased differential gain, a
decreased transparency carrier density leading to lower laser thresholds, as well as
a better polarization mode selectivity [7–9]. In addition, the use of strain enabled to
engineer the emission wavelength of GaAs-based lasers from 630 nm to 1180 nm using a
variety of different quantum well materials [10]. This wavelength range is of interest for
a large number of applications which includes their use as pump lasers of fiber and solid-
state laser systems [11–13], as sources of LIDAR systems [14], or for direct material
processing [15–18]. Further typical applications of GaAs-based diode lasers are in the
context of free-space communication, the generation of terahertz radiation [19, 20],
as well as the excitation of specific atomic transitions as needed to realize optical
clocks [21, 22], and in spectroscopic measurements [23, 24].

A schematic representation of a typical edge-emitting GaAs-based diode laser with
separate confinement heterostructure is depicted in Fig. 1.1. In the vertical (y) di-
rection, light is guided through epitaxially grown waveguide core and cladding layers
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Figure 1.1: Schematic (a) three-dimensional representation of an edge-emitting
diode laser including information on typical device extensions. In addition, the re-
sulting radiation behavior including its defining parameters is shown. Panel (a) and
(b) show the corresponding lateral-longitudinal (x-z) top view and a lateral-vertical (x-
y) transverse cross-section, respectively.

consisting of different material compositions (e.g. Al fraction in AlGaAs). In contrast,
the excess carriers, which are the basis of the optical gain, are vertically confined in sev-
eral nm thick quantum wells. In longitudinal (z) direction, the laser cavity is formed by
the facets created by cleaving the GaAs-substrate along appropriated crystallographic
planes. Consequently, the optical feedback of the laser facets is a result of the re-
flection at the crystal-air interfaces. The lateral (x) confinement of the optical field
can be obtained by means of gain or index guiding. The former is often accomplished
by shallow or deep ion implantation. In contrast, the latter is commonly realized by
etching a pair of trenches into the p-doped layers, as shown in Fig. 1.1 (a), defining a
ridge waveguide.

Depending on the specific application, diode lasers must meet certain performance
criteria in terms of beam quality, output power, brightness, efficiency, and spectral
width. The former is commonly characterized by the beam propagation ratio
M2 = M2

lat ·M2
vert defined as the ratio of diffraction-related beam widening experienced

by the emitted field distribution compared to a Gaussian beam. Since the vertical
waveguide is commonly designed to support only its fundamental mode, as indicated
in Fig. 1.1 (c), the corresponding vertical beam quality is close to unity (M2

vert ≈ 1).
Consequently, the beam propagation ratio of diode lasers is commonly characterized
by its lateral component

M2
lat = BPPlat

π

λ0

with BPPlat =
wlatθlat

4
, (1.1)

where wlat is the lateral near-field width and θlat the corresponding far-field angle, as
shown in Fig. 1.1 (a), whereas BPPlat is the lateral beam parameter product. If a
high output power Pout is required, the contact stripe width commonly exceeds the
emission wavelength multiple times, leading to the appearance of several lateral modes
as indicated in panel (b) of Fig. 1.1. In this context, the lateral brightness

Blat =
Pout

BPPlat

, (1.2)

2



which is the ratio of the output power and the beam parameter product is a suitable
figure of merit. Finally, the electro-optical conversion efficiency is defined as

ηeo =
Pout

Pel

(1.3)

with Pel = IDUD being the electrical power, where ID and UD are the applied current
and the resulting voltage across the diode, respectively.

Lateral-longitudinal non-uniform laser designs

Most GaAs-based high-power diode lasers are based on longitudinally uniform wave-
guide and contact stripe layouts, as schematically depicted in Fig. 1.1. Lasers that
possess a width of the lateral ridge waveguide in the order of the emitted wavelength
show a nearly diffraction-limited beam and are called ridge-waveguide lasers (RWL),
see Fig. 1.2 (a). Depending on the emitted wavelength and vertical structure their
CW output power is restricted to a few Watts [25,26]. The factors limiting the output
power are the high intra-cavity current and power densities. This causes device heating
which further leads to a reduction of the internal quantum efficiency of the active
region. Elevated temperatures in combination with the high optical power densities
also increase the risk of catastrophic optical damage (COD) [27,28].

Both of those effects can be reduced by increasing the contact area. Thus, higher
optical output powers can be reached by increasing the ridge or contact width in the
context of index- or gain-guided lasers, respectively. The resulting devices are called
broad-area lasers (BAL), as schematically shown in Fig. 1.2 (b). These lasers emit up
to several tens of Watts. For BALs with 90 μm wide contact, output powers of up to
25W have been reported [29]. However, broad-area devices support a large number of
lateral waveguide modes which leads to a decline of their beam quality [30].

A way to combine a good beam quality and a high output power is to use a lateral-
longitudinal non-uniform laser design which combines the mode limiting narrow index-
guided waveguide of an RWL and the large contact area and aperture of a BAL. This
well-established device type is known as tapered laser (TL) and is schematically shown
in Fig. 1.2 (c). Near diffraction-limited lateral beam characteristics at central lobe
powers of up to 8W have been demonstrated [31,32]. Despite these improvements, TL
show only a moderate electro-optical efficiency of η < 50% and are susceptible to a
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Figure 1.2: Schematic top view of a ridge-waveguide laser (RWL), a broad-area laser
(BAL), and a tapered laser (TL). Underneath each laser type a rough classification
in terms of beam quality, electro-optical efficiency, and optical output power is given.
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power-dependent lateral astigmatism [31]. Astigmatism refers to different beam waist
positions of the optical field diffracting in the lateral (x) and vertical (y) directions.
However, the brightness achievable with TLs is higher than any other single emitter
diode laser indicating the potential of lateral-longitudinal non-uniform laser designs to
improve aspects of the device performance.

A further potential application of slightly tapered resonator designs, with an open-
ing angle smaller than 4◦ to 6◦ as commonly used in TLs, is to reduce longitudinal
spatial hole burning which is a direct result of lasers with asymmetric facet reflec-
tivity values as commonly used in high-power diode lasers [33, 34]. However, lateral-
longitudinal non-uniform laser designs are not restricted to high-power lasers. In recent
years an increasing number of complex and highly functional lasers have been reported.
This development was mainly driven by the demands of the telecom and datacom in-
dustry and therefore located at around 1550 nm emission wavelength. An example of
highly integrated and functional devices are integrated dual-wavelength lasers which
emit two distinct wavelengths out of a single waveguide aperture. The resulting beat
note is mainly used to generate electrical signals in the microwave region [23,35].

However, applications in spectroscopy as well as, the generation of terahertz ra-
diation via GaAs-based photomixers, require dual-wavelength laser in the wavelength
region covered by GaAs-based laser devices [35,36]. Consequently, Y-branch distributed
Bragg reflector (DBR) dual-wavelength lasers centered at various wavelengths between
532 nm and 975 nm have been developed and successfully applied [37,38]. Nevertheless,
these lasers have the potential to be further optimized in terms of compactness and
functionality, output power, beam quality, and spectral stability.

Aim and structure of this thesis

In this thesis, various lateral-longitudinal non-uniform cavity designs for CW-driven
edge-emitting GaAs diode lasers were investigated in detail. The aim was to im-
prove selected performance parameters such as optical output power, beam quality,
brightness, electro-optical efficiency, and spectral stability compared to currently used
designs. This was done on the basis of passive waveguide and active laser simulations.
Whenever possible the simulation results were compared to those of experiments.

This study was carried out on three different types of lasers, including dual-wavelength
lasers with narrow and complex-shaped waveguides, tapered ridge-waveguide lasers,
and tapered broad-area lasers, all of which are depicted schematically in Fig. 1.3. This
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Figure 1.3: Schematic top view of the three investigated lateral-longitudinal non-
uniform laser cavity designs. In addition, the corresponding mean waveguide widths
and emission wavelengths are summarized at the bottom.
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figure also highlights the differences in the corresponding ridge widths and emission
wavelengths. A detailed introduction to each of these laser designs is given at the
beginning of the corresponding chapters.

However, before presenting the results, the two preceding chapters provide a the-
oretical background on selected topics useful for understanding the present work. In
Chapter 2, the fundamentals of wave propagation in dielectric waveguides are intro-
duced, including longitudinally invariant integrated waveguide components, namely,
waveguide bends, tapers, and couplers. The mathematical models of the used simula-
tion tools are outlined in Chapter 3. This includes a two-dimensional (x-z) time-domain
traveling wave modal-based laser simulator and an eigenmode expansion method-based
three-dimensional Maxwell solver used to simulate and optimize integrated waveguide
components.

In Chapters 4-6, the results of this thesis are presented. It starts with the presenta-
tion of a novel dual-wavelength laser in Chapter 4. It is aimed to avoid the shortcomings
of previous Y-coupler-based laser designs, which suffer from strongly modulated near
and far-field profiles as well as beam steering. This is followed by two chapters inves-
tigating the impact of tapered contact and waveguide layouts of ridge-waveguide and
broad-area lasers. The focus in Chapter 5 is to increase the output power by keep-
ing a good beam quality to reach very high brightness values. Chapter 6 is mainly
about the impact of tapered broad-area laser designs on device efficiency as well as the
intra-cavity intensity, carrier density, and temperature distributions.

Finally, in Cheaper 7, this work is summarized, and an outlook is given. The latter
includes ideas on how to use the results of this work for future laser designs. Parts of
the results presented in this thesis have already been published in Refs. [39–43].
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Chapter 2

Wave propagation in optical
waveguides

In this chapter, the theoretical basis for describing the light propagation in longitu-
dinal non-uniform diode laser waveguide structures is introduced. For further details
about optical waveguiding in diode lasers and photonic integrated circuits the reader
is referred to Refs. [44–51].

The basis of dielectric waveguides is the effect of total internal reflection at the
boundary of materials having different refractive indices n1 and n2 with n1 > n2, see
Fig. 2.1. Light which propagates under the angle θ within a waveguide core gets com-
pletely reflected if θ < θc = arccos(n2/n1), with n1 and n2 being the waveguide core
and cladding indices, respectively. However, not every angle θ leads to a lossless wave-
guide propagation since the accumulated phase has to fulfill the following eigenvalue
equation

2π

λ0

n1h sin(θ
(m)) = Φ(θ(m)) + πm (2.1)

with λ0, h, and m = 1, 2, 3, ... being the free space wavelength, waveguide height and
the number of the eigenvalue, respectively. Here, Φ takes into account the phase-shift
due to the total internal reflection.

2.1 Maxwell’s and wave equations

The classical behavior of electromagnetic fields inside arbitrarily shaped waveguides are
governed by Maxwell’s equations. Restricting its use to non-magnetizable materials and
optical frequencies Maxwell’s equations can be written in differential form as

∇× Ẽ = −μ0∂tH̃ , (2.2)

∇× H̃ = j̃ + ∂tD̃, (2.3)

∇ · D̃ = 0, (2.4)

∇ · H̃ = 0, (2.5)

where j̃, Ẽ, H̃ and D̃ are the time t and space r = (x, y, z) dependent macroscopic
current density, electric field, magnetic field and displacement field vectors, respectively.
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The latter takes into account the material response to the E-field via

D̃ = ε0Ẽ + P̃ (2.6)

with P̃ being the dielectric polarization.

In general, Eqs. (2.2)-(2.6) are sufficient to model the propagation of light waves
inside arbitrary dielectric waveguides. However, a more practical approach is to derive
a wave equation for either the electric or the magnetic field. For the E-field this is done
by applying ∇× to Eq. (2.2) and using Eq. (2.3) to eliminate the H-field. Subsequently,
the vector identity ∇×∇× Ẽ = ∇(∇ · Ẽ) −∇2Ẽ as well as Eq. (2.4) and Eq. (2.6)
are used to obtain

1

ε0
∇(∇ · P̃ ) +∇2Ẽ = μ0∂tj̃ +

1

c20
∂2
t Ẽ + μ0∂

2
t P̃ , (2.7)

with ε0, μ0 and c0 = (ε0μ0)
−1/2 being the free space permittivity, permeability and

speed of light, respectively. The material response to the electric field leads to the
polarization P̃ which depends on the electric field history Ẽ(r, t− τ) for τ > 0 and is
described by the convolution

P̃ (r, t) = ε0

∫ ∞

0

χ(r, τ)Ẽ(r, t− τ)dτ (2.8)

with χ = ε − 1 being the susceptibility function and ε the relative permittivity.
Using the convolution theorem, Eq. (2.8) can be written as the product P (r, ω) =
ε0χ(r, ω)E(r, ω) in frequency space. The corresponding frequency domain wave equa-
tion can be obtained by applying the Fourier differentiation rule (∂t → iω) to Eq. (2.7)
which leads to

1

ε0
∇(∇ · P ) +∇2E = iωμ0j − k2

0E − ω2μ0P . (2.9)

Here, k0 = 2π
λ0

and ω are the free space propagation constant and angular frequency,
respectively. The bold letters without superscript tilde represent space and frequency
dependent vectors. With the frequency domain equivalent of Eq. (2.6), neglecting the
current term and by assuming that

√
ε(r) = n(r), Eq. (2.9) can be rewritten into

∇
(∇n2

n2
E

)
+∇2E = −k2

0n
2E. (2.10)

If, in addition, the refractive index distribution n(r) changes slowly on the wave-
length scale then the first term on the left hand side of Eq. (2.10) is neglectable which
leads to

∇2Ψ = −k2
0n

2Ψ (2.11)

known as scalar Helmholtz equation for inhomogeneous media. Here, the different
E-field components are no longer coupled to each other and can all be represented
separately by the scalar potential Ψ.
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Figure 2.1: Schematic representation of (a) a vertical slab waveguide with n1 and
n2 being the waveguide core and cladding refractive indices, respectively. Panel (b)
shows a RW which can be formed by selectively removing parts of the slab waveguide.

2.2 Waveguide modes

The most simple optical waveguide is a slab waveguide as depicted in Fig. 2.1 (a). Here,
light is only guided in one direction. In the context of diode lasers, this is the case for
the epitaxially grown vertical waveguide consisting of layers having different refractive
indices due to their specific material composition. However, the refractive index profile
is normally more elaborated than shown here. An additional lateral optical confinement
can be obtained by etching a pair of trenches which form a ridge waveguide (RW) as
shown in Fig. 2.1 (b).

The propagation of monochromatic light waves inside arbitrarily shaped waveguide
structures is fully governed by the wave equation (2.9). However, if the waveguide
can be assumed to be longitudinal invariant, lets say in the z-direction, its mathemat-
ical description can be further simplified. The refractive index distribution n(x, y, z)
becomes n(x, y) which allows to write the electrical field as

E(x, y; z) = E(m)(x, y)e−iβ(m)z =

⎛
⎜⎝E

(m)
x (x, y)

E
(m)
y (x, y)

E
(m)
z (x, y)

⎞
⎟⎠ e−iβ(m)z (2.12)

where β(m) is the complex modal propagation constant accounting for the phase and
amplitude changes caused by the waveguide structure. Inserting Eq. (2.12) into the
wave Eq. (2.10) leads to the following three equations [47]:

∂2E
(m)
x

∂y2
+

∂

∂x

⎛
⎝ 1

n2

∂
(
n2E

(m)
x

)
∂x

⎞
⎠+

(
k2
0n

2 − (β(m))2
)
E(m)

x

+
∂

∂x

⎛
⎝ 1

n2

∂
(
n2E

(m)
y

)
∂y

⎞
⎠− ∂2E

(m)
y

∂x∂y
= 0,

(2.13)

∂2E
(m)
y

∂x2
+

∂

∂y

⎛
⎝ 1

n2

∂
(
n2E

(m)
y

)
∂y

⎞
⎠+

(
k2
0n

2 − (β(m))2
)
E(m)

y

+
∂

∂y

⎛
⎝ 1

n2

∂
(
n2E

(m)
x

)
∂x

⎞
⎠− ∂2E

(m)
x

∂y∂x
= 0,

(2.14)
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and
∂2E

(m)
z

∂x2
+

∂2E
(m)
z

∂y2
+
(
k2
0n

2 − (β(m))2
)
E(m)

z

−iβ(m)

(
1

n2

∂n2

∂x
E(m)

x +
1

n2

∂n2

∂y
E(m)

y

)
= 0.

(2.15)

Since Eq. (2.13) and Eq. (2.14) only contain transverse field components Ex and Ey

it is sufficient to solve these equations defining the transverse field Et = (Ex, Ey, 0). If

necessary, the E
(m)
z and all H(m)-field components can be calculated using Maxwell’s

equations.
The waveguide problem can be further simplified by assuming that the waveguide

modes are either dominated by Ex and Hy (x-polarized) or by Ey and Hx (y-polarized)
field components. This polarization approximation has proven to be quite accurate
in the context of planar waveguide analysis [52]. It leads to two decoupled eigenvalue
equations for the x-polarized quasi-TE modes

∂2E
(m)
x

∂y2
+

∂

∂x

⎛
⎝ 1

n2

∂
(
n2E

(m)
x

)
∂x

⎞
⎠+

(
k2
0n

2 − (β(m))2
)
E(m)

x = 0 (2.16)

and y-polarized quasi-TM modes

∂2E
(m)
y

∂x2
+

∂

∂y

⎛
⎝ 1

n2

∂
(
n2E

(m)
y

)
∂y

⎞
⎠+

(
k2
0n

2 − (β(m))2
)
E(m)

y = 0. (2.17)

In the context of slab waveguides, as schematically shown in Fig. 2.1 (a), the re-
fractive index distribution is invariant in one additional transverse direction. If this
happens to be the lateral (x) direction the corresponding derivatives can be neglected
leading to

d2E
(m)
x

dy2
+
(
k2
0n

2 − (β(m))2
)
E(m)

x = 0 (2.18)

and

d

dy

⎛
⎝ 1

n2

d
(
n2E

(m)
y

)
dy

⎞
⎠+

(
k2
0n

2 − (β(m))2
)
E(m)

y = 0. (2.19)

As outlined in Appendix B it is straight forward to numerically solve Eqs. (2.18)
and (2.19) for arbitrary index profiles by using the finite-difference method. However,
for piecewise homogeneous waveguides the equations can be solved analytically [45,47].
By assuming a symmetric slab waveguide with n1 and n2 being the core and cladding
index, respectively, an expression for the number of guided slab modes M can be
derived as [45]

M = ceil

(
2h

λ0

√
n2
1 − n2

2

)
(2.20)

where the ceil(x) function rounds its argument x to the next higher integer and h the
waveguide core height as shown in Fig. 2.1.
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