

Lars Biermann (Autor)

Alkalische Depolymerisation von Poly(ethylenterephthalat) als Grundlage eines Monomerrecyclings

https://cuvillier.de/de/shop/publications/8982

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

	fassung	
	act	
Abku	rzungs- und Symbolverzeichnis	V
1 E	INLEITUNG	1
1 1	EINORDNUNG DES THEMAS	1
	ZIELSETZUNG DER ARBEIT	
1.4	ZIELSE I ZUNG DER ARDEI I	
2 <u>S</u>	FAND DES WISSENS	3
2 1	POLYETHYLENTEREPHTHALAT: KONVENTIONELLE HERSTELLUNG UND ANWENDUNG	CCEDIETI
	3	13GEDIE I E
	EINSATZGEBIETE UND EINSATZVOLUMEN VON PET	2
2.1.1		
	FASERN UND TEXTILIEN	
2.1.3		
	AUSGANGSSTOFFE FÜR DIE PET-HERSTELLUNG	
2.2.1		
2.2.2		
	RECYCLING	
2.3.1		
	PET IM KONTEXT DER KREISLAUFWIRTSCHAFT	
2.3.3		
	EINSATZFELDER VON LABORKNETERN	
2.4.1		
	ELSCHNECKENEXTRUDERN	30
	KONTINUIERLICHE DEPOLYMERISATION VON PET	
	Prozessparameter	
2.5	EINORDNUNG DER EIGENEN ARBEIT	34
3 <u>M</u>	ATERIAL UND METHODEN	36
3.1	AUFBAU LABORKNETER UND VERSUCHSDURCHFÜHRUNG	36
	AUFBAU LABORKNETER	
3.1.2	STANDARDVERSUCHSDURCHFÜHRUNG UND AUFARBEITUNG	37
3.2	DEPOLYMERISATION VON PET IM LABORKNETER	38
3.3	AUFBAU UND BETRIEB TECHNIKUMSEXTRUDER	40
	CHEMIKALIEN UND PROBENMATERIAL	
	AUSWERTUNGSMETHODIK	
3.5.1	Ausbeuteberechnung	43
3.5.2	Drehmomentauswertung	44
3.5.3	MASSENTEMPERATURAUSWERTUNG	44

3.6	ANALYTIK DER TEREPHTHALSÄURE	46
3.6.1	UV/Vis-Spektroskopie	46
3.6.2	NMR-Spektroskopie	46
3.6.3	HIGH PERFORMANCE LIQUID CHROMATOGRAPHY	46
3.6.4	IR-Spektroskopie	47
3.6.5	TEXTURE ANALYZER	47
<u>4</u> <u>D</u>	DISKONTINUIERLICHE DEPOLYMERISATION VON PET IM LABORKNETER	48
4.1	EINFLUSS DER PROZESSPARAMETER	48
4.1.1	EINFLUSS DER KAMMERTEMPERATUR AUF DIE DEPOLYMERISATIONSREAKTION	48
4.1.2	EINFLUSS DER VERWEILZEIT	54
4.1.3	BERECHNUNG DER RAUM-ZEIT-AUSBEUTE	57
4.1.4	KINETISCHE BETRACHTUNG DER PET-DEPOLYMERISATION	58
4.1.5	EINFLUSS DER DREHZAHL AUF DIE DEPOLYMERISATIONSREAKTION	60
4.2	EINFLUSS APPARATIVER PARAMETER	64
4.2.1	EINFLUSS DES KAMMERFÜLLGRADS AUF DIE DEPOLYMERISATIONSREAKTION	65
4.2.2	EINFLUSS DER ROTORGEOMETRIE AUF DAS DREHMOMENT	68
4.3	EINFLUSS DES FEEDMATERIALS AUF DIE DEPOLYMERISATIONS-REAKTION VON PET	69
4.3.1	EINFLUSS EINER INERTEN BESCHICHTUNG UND DER PET-PARTIKELGRÖßE AUF DIE	
DEPO	DLYMERISATIONSREAKTION	69
4.3.2	EINFLUSS VON INERTEN FREMDSTOFFANTEILEN AUF DIE DEPOLYMERISATION VON PET	73
4.3.3	DEPOLYMERISATION VON REALEN ABFALLFRAKTIONEN UND MULTILAYERMATERIALIEN	74
4.3.4	EINFLUSS DER STÖCHIOMETRIE	79
4.3.5	EINFLUSS DES LÖSUNGSMITTELS	82
4.3.6	EINFLUSS DER BASEN-PARTIKELGRÖßE AUF DIE DEPOLYMERISATIONSREAKTION	88
	ENTWICKLUNG EINES PET-GEHALT-BESTIMMUNGSVERFAHRENS REALER	
ABFA	ALLFRAKTIONEN	94
4.5	ZUSAMMENFASSUNG DER ERGEBNISSE UND ABLEITUNG VORTEILHAFTER	
	RIEBSBEDINGUNGEN	
4.6	ÜBERSICHT DER EINFLUSSPARAMETER AUF DIE DEPOLYMERISATION VON PET	99
<u>5 K</u>	CONTINUIERLICHE DEPOLYMERISATION VON PET IM TECHNIKUMSEXTRUD	ER
1	.02	
	ÜBERTRAGBARKEIT DER DEPOLYMERISATION VON PET IM LABORKNETER AUF DIE	
DEPO	DLYMERISATION VON PET IM TECHNIKUMSEXTRUDER	
5.1.1	BERECHNUNG DES FREIEN VOLUMENS IM DOPPELSCHNECKENEXTRUDER	103
<u>6</u> Z	USAMMENFASSUNG UND AUSBLICK	112
6.1	ZUSAMMENFASSUNG	112
6.2	AUSBLICK	.113
7 <u>L</u>	ITERATURVERZEICHNIS	115
8 A	NHANG	.121

8.1	I NMR-Spektren	121
	2 BESTIMMUNG DER AKTIVIERUNGSENERGIE DER PET-DEPOLYMERISATIONSREAKTION	
	ROHDATEN ZUR BESTIMMUNG DER MITTLEREN RAUM-ZEIT-AUSBEUTE	
0.0		
9	PUBLIKATIONSLISTE	130