Introduction

1.1 Motivation

Structural formation through self-assembly or external assembly is omnipresent in a
large number of natural and technological systems. At the smallest atomistic scales of
individual (macro-)molecules (few to thousands of atoms connected by covalent bonds)
examples such as polymers, carbon nano tubes [1, 2], and polyoxometalates (large poly-
atomic ion structures) [3, 4] exist in technology. These macromolecules provide for
example material building blocks or catalysts for oxidization of organic compounds in
the case of polyoxometalates. Similarly and likely even more important for all living or-
ganisms, virtually all proteins require a specific three dimensional structure, also called
conformation or secondary/tertiary structure, to enable their function. Issues with re-
gard to their conformation directly impact function e.g. leading to various diseases such
as in the context of allergies [5]. This high impact has lead to significant scientific inter-
est to understand protein folding as shown in the ’critical assessment of protein structure
prediction’ (CASP) [6], a biennial competition of protein folding prediction algorithms,
which has notably been won in 2018 and 2020 by the deep-learning algorithm AlphaFold

(7).

Similarly, these structural formation mechanisms extend hierarchically to larger assem-
blies of multiple macromolecules, which is the focus of this work. These macromolecular
assemblies are defined by both composition and structure to enable their function. De-
pending on the field other terms such as supramolecular assembly in
(supramolecular) chemistry and nanotechnology or quaternary structure in biology are
also common [8, 9]. The occurring structural formation is caused by non-covalent in-
termolecular interactions, which is the distinguishing element from individual macro-

molecules (see IUPAC definition [8]). However, some structures such as chemically
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cross-linked gels [10], which are connected by covalent bonds, might also be considered
to fall in the same category of macromolecular assemblies while not adhering to the
previous definition. Macromolecular assemblies in general may vary with regard to their
function, size, selectivity of intermolecular binding sites, regularity of structural organi-
zation, assembly mechanisms, and other properties. In the following, some examples of

macromolecular structures will be provided with special regard to their function.

In the biological context, a variety of biopolymers (polypeptides [polymers of amino
acids, e.g. collagen; protein when sufficiently large with biological functionality], polynu-
cleotides [e.g. RNA, DNA], polysaccharides [e.g. alginate] [8]) and non-polymeric bio-
molecules (e.g. lipids) build larger structures through self-assembly of multiple copies
either of the same biomolecule or different types to enable their function. One example
is the field of viruses, which often contain structural proteins with the ability to assemble
into regular structures, called virus capsids or virus-like particles (VLP). These struc-
tures are critical for the function of the overall virus during infection and reproduction,
as well as for the immune system recognition [11]. Examples are the hepatitis B virus

[12], adenoviruses [13], and coronaviruses [14].

Another example is the field of multi-enzymatic biocatalysis [15], where different enzymes
(proteins with biocatalytic function) catalyze a cascade chemical reaction. Many times
such systems achieve their high activity through structural formation leading to effects
like metabolic channeling [16, 17]. Examples for this are the pyruvate dehydrogenase
complex (PDC) [18], fatty acid synthase [19], glutamine synthetase [20], and others.
Adaptations and possibly de novo creations of multi-enzymatic biosynthetic reactions
are consequently also of high interest and being developed for industrial applications
[21-23).

Further examples exist in the context of material science, e.g. in regard to colloids or
gels [8]. For a variety of dispersed and continuous phases the molecular assembly is
critical to ensure its function, e.g. with regard to mechanical stability. Examples are
hydrogels and aerogels [24], which rely on their cross-linked polymer network structure
to enable mechanical stability. Underlying polymers can be a variety of natural poly-
mers, such as alginate [25], as well as synthetic polymers, such as polyethylene glycol
[26]. Other examples from supramolecular chemistry and nanotechnology include self-

assembled monolayers [27] and host-guest chemistry [28, 29].

In summary, the large body of examples, literature, and features highlights the great
interest of both the scientific and industrial community in understanding, modifying, and
possibly de novo creating such macromolecular structures. In order to gain this state of
the art understanding, a variety of experimental and numerical techniques have already

been developed. Nonetheless, limitations apply steering from the challenging multiscale
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nature of such phenomena, as well as high dynamics and partially disordered structural
elements. Focus of this work will be placed on numerical simulation of these systems
to improve mechanistic understanding. For this, a novel physics-based and data-driven
methodology will be presented capable of reaching the micro-meter and milli-second
scales using bottom-up parameterization, thus advancing capabilities in the field. In the
following, the state of the art with regard to numerical simulation approaches will be

depicted.

1.2 Theory and State of the Art in Molecular Mechanics

Modeling and simulation of real-world systems is required to be both accurate and
efficient - thus the chosen model description is dependent on the system and properties
of interest.! In the context of molecular modeling and specifically molecular mechanics of
the aforementioned systems, neither the treatment of quantum dynamical or relativistic
effects, nor abstractions as a continuum are accurate and efficient. As a result, most
developed simulation methods (under the assumption of interest in the dynamics of
the system) describe such systems using discrete modeling approaches in the context of
molecular dynamics (MD) related methods. As such, they assume the atomistic objects
of the system to behave non-relativistic (i.e. velocities are much smaller than the speed
of light), the Born-Oppenheimer approximation to hold (i.e. electrons move much faster
than nuclei), and atomic motion to be following classical mechanics including inertia
effects. By abstractions of the discrete units from individual atoms to coarse-grained
(CG) beads the level of detail and thus numerically reachable scales of length and time
can be controlled. In the following, the fundamentals of MD and related methods will
be discussed. For textbooks and reviews see e.g. refs. [30-35]. Before going into the
details, it should be noted that other modeling approaches exist when one is primarily
interested in the static properties of such systems, e.g. regarding molecular assembly,
but not formation mechanisms and dynamics. These approaches will be discussed briefly
in Sec. 1.2.3.

1.2.1 Molecular Dynamics (MD)

As just highlighted, molecular dynamics (MD) describes the dynamic motion of atomic
nuclei (referred to simply as atoms in the following) using classical mechanics to study
molecular systems in the fields of physical chemistry, biochemistry, and others. For

these systems, the Born-Oppenheimer approximation holds and electrons are typically

!This overview is conceptually based on Berendsen [30] and begins on his level 4 abstraction.
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assumed to be in their ground state. Thus, atom interaction is fundamentally captured
by the time-independent Schrodinger equation depending on nuclei positions and elec-
trons. Effective interactions are subsequently modeled through so called ’force-fields’
enabling a simple description, thus not requiring the explicit treatment of electron dis-
tributions. Starting from classical mechanics, the motion of an atom 7 with mass m;

in a system of N atoms is described using Newton’s equation of motion as
mﬂ?z == F:z == *VUM (11)

where the acceleration #; (second time-derivative of position #;) corresponding to the
force ﬁl results from the interaction potential U; with other atoms. Assume the inter-
action potential U to be known at this point. The resulting velocity and trajectory in
time can be calculated based on an initial condition of coordinates and velocities using
numerical time integration with time steps A¢. In MD, numerical time integrations
is typically performed using explicit time stepping using e.g. Verlet [36] or leap-frog [37]
algorithms. In order to enable a numerically stable solution, a sufficiently small time
step has to be chosen. As can be seen directly in eq. 1.1, this is primarily influenced
by light atoms leading to time step requirements in the 1fs (10719 s) range required by
hydrogen bonds [38].

Due to the high complexity and small time steps, only small system sizes on scales
up to tens or hundreds of nano-meters can currently be modeled. The shape and size
of the simulation domain, as well as its boundary conditions has to be chosen
suitable to avoid boundary effects. While open boundaries are generally possible, the
represented molecules in dilute gas phases or vacuum are of limited interest. Thus,
periodic boundary conditions are most widely employed and to a lesser extend continuum
boundary conditions (e.g. for surface absorption) or restrained-shell boundary conditions
[30, 39]. Additionally, note that the shape of simulation domains, also with periodic
boundary conditions, is not restricted to cubic domains, but may also include e.g. triclinic

shapes, hexagons, and more [40] - as might be advantageous e.g. for studying crystals.

Having provided the simulation domain for atoms to be placed in and time integration
algorithms to determine trajectories based on the forces an atom experiences, the main
question becomes a descriptor for the forces ﬁz (see eq. 1.1) between interacting atoms,
which are equivalent to the negative gradient of the potential energy —VU;. As pre-
viously noted, force-fields provide the effective description for the interaction of all
atoms or groups of atoms (beads, see coarse-graining in next section) in a system. Con-
sequently, such force-fields provide an effective model of the electron distribution in their
ground state, i.e. no chemical reactions, resulting from the time-independent Schrodinger

equation. As such, they have to be sufficiently simple to solve large atomistic systems
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over reasonably long times, while also providing sufficient accuracy. For this, force-fields
typically take the covalent structure of molecules into account? and separate the energy

contributions as

U= Ucovalent + Unon—covalenh (12)
Ucovalent = Ubond + Uangle + Udihedral + Uimprop. dihedral (13)
Unon—covalent = Uelectrostatic + Uvan der Waals; (14)

where Ucoyalent are energy terms of covalent bonds? including Upeng describing bond
stretching, Uangle describing bond angles formed by three atoms (e.g. O-C-O in COy),
and Udginedral / Uimprop. dihedral describing dihedral angles between four atoms in different
planes (improper dihedral to keep planar groups like aromatic rings planar); Uyon—covalent
are non-bonded interactions (bonded interaction pairs excluded/modified) that are pair-
wise additive including Usglectrostatic describing electrostatic interaction (Coulomb poten-
tial) and Uyan der Waals describing van der Waals interaction (typically modeled as a
Lennard-Jones potential). Typically, established functional descriptions are used for the
respective energy contributions and tabulation is employed for computational efficiency
[41, 42]. More elaborate force-fields might incorporate additional features such as polar-
izability, virtual interaction sites, dummy particles, coupling terms, flexible constraints,
charge distributions, multipoles, reactive components, and others [30]. A variety of
force-fields have been developed with the motivation of providing an as widely applica-
ble atom interaction parameterization as possible. However, research has shown that
such (simple) force-fields are largely only applicable to a class of systems and less trans-
ferable as they would ideally be?. Details on parameterization of force-fields is beyond
the scope of this work, but approaches include e.g. ab initio quantum calculations and
adjustments according to empirical observations [43]. Examples of important classical
force-fields are AMBER [44], CHARMM [45], GROMOS [46], and OPLS [47]. Exam-
ples of polarizable force-fields are further developments of AMBER [48] and CHARMM
[49, 50]. An example for reactive force-fields (i.e. incorporating chemical reactions) is
ReaxFF [51]. For more details on force-fields see e.g. with regard to protein simulation
ref. [52].

In order for pairwise contacts of non-covalent contributions to be calculated efficiently
for reasonably large systems (i.e. not scaling with a computational complexity of O(N?)

for the number of atoms), cutoff distances are employed. Each force-field comes

2Thus no chemical reactions, changes in covalent structure, redox states, or protonation may take
place [30]. Such systems have to be treated differently, e.g. using quantum-chemical methods.

3Note that covalent bonds are sometimes also represented through constraints. Such approaches will
be discussed in more detail in Ch. 5.

4Limitations in force-field transferability might e.g. result from non-additivity of constituent terms,
neglect of contributions, or adjustments to empirical observations [30]
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with specific cutoff distances integral for the overall energy balance and reproduction of
desired properties, see e.g. ref. [53]. In order to account for the discontinuity at cutoff, a
variety of switching and shifting methods have been developed, see e.g. in refs. [30, 42]. In
order for long-range interactions (specifically electrostatic interactions and especially
with polarization in medium) to be modeled more accurately, coupled field approaches

such as the (smooth) Particle-Mesh-Ewald method [54, 55] have been developed.

Note that in addition to classical functional descriptions a variety of machine learned
force-fields have been developed recently using (deep) neural networks on quantum me-
chanical data [56-58]. Alternatively to an effective force-field, ab initio molecular dy-
namics, initially proposed by Car and Parrinello [59], solves first principle quantum
mechanical methods (such as the density functional theory (DFT) and approximations
like ’divide-and-conquer’ DFT [60] or ’tight-binding’ DFT [61]) to gain more detailed
information on the electron distribution and potential energy at the cost of significantly
higher computational demand [59, 62, 63]. Such approaches can further capture elec-
trons in excited states, e.g. for chemical reactions. Additionally, a variety of methods
for treating subsystems at the quantum mechanical scale while maintaining effective
MD force-fields in the remaining have been developed in the context of hybrid quantum
mechanical / molecular mechanics (QM/MM) methods, initially proposed by Warshel
and Levitt [64], see also refs. [65, 66]. More details with regard to force-fields and

intermolecular interaction will be provided in Ch. 4.

Until this point, systems in molecular dynamics were considered as a simulation domain
filled with atoms that evolve in time from a given initial condition. However, such a
system is merely one form of a thermodynamic ensemble in statistical mechanics
- specifically a microcanonical ensemble of constant number of particles N, volume V|
and energy E. Alternatively, instead of constraining the number of particles N one
can constrain the chemical potential p; instead of the volume V' one can constrain the
pressure p; and instead of energy E one can constrain the temperature T' (or enthalpy
H). Some of the most widely employed ensembles and their names are listed in Tab. 1.1.
In the context of MD and specifically this work, the canonical NV'T and isothermal-
isobaric N PT ensemble are most crucial. Thus, the main question consequently becomes

how pressure and temperature control can be achieved.

TABLE 1.1: Most widely used thermodynamic ensembles.

Abbreviation Name
NVE Microcanonical
NVT Canonical
wVrT Grand canonical
NPT Isothermal-isobaric
NPH Isoenthalpic-isobaric
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In order to enforce the desired ensemble or perform non-equilibrium simulations, a vari-
ety of temperature and pressure coupling methods (also called thermostats and
barostats) have been developed and can typically be classified as stochastic methods,
strong-coupling methods, weak-coupling methods, and extended system dynamics [30]:
Stochastic methods apply either stochastic exciting forces in combination with friction
forces or randomly reassign certain variables (e.g. velocities for temperature control).
They are particularly used to control temperature and enforce a canonical ensemble.
Examples are the Anderson thermostat [67] (work also contains a barostat) and more
generally Langevin dynamics (see following section). Strong-coupling methods constrain
a certain variable (e.g. velocities for temperature control) employing e.g. a scaling in
every time step. Examples are the isokinetic Gauss thermostat [68, 69] and related
barostats by Evans et al. [70, 71]. Weak-coupling methods apply non-stochastic pertur-
bations to enable a first-order decay of deviations from the desired controlled quantities
(temperature via velocity scaling or pressure via coordinate scaling). An example is
the Berendsen thermostat [72]. Extended system dynamics add additional degrees of
freedom to control quantities and an example is the Nosé-Hover thermostat [69, 73, 74].
A more detailed discussion can be found in ref. [30]. Additional details with regard to

temperature control and diffusion will be provided in Ch. 3.

Note that while the majority of MD simulations are performed at constant temperature,
a variety of additional methods exist, which are advantageous for enhanced sampling,
e.g. conformation sampling through thermodynamic state changes. Examples are sim-
ulated annealing [75], replica exchange MD [76], and expanded ensembles [77]. More
details will be provided in Sec. 3.6.

Furthermore, as most molecular systems exist in solution, solvent modeling is given
special attention in MD. This is especially true for modeling water, which is the most
common solvent in nature and also many technical systems - thus the focus in the follow-
ing. For many of such systems the computational load resulting from the modeling of the
solvent is quite significant - often exceeding that of the actual molecules investigated. In
this regard, it is crucial which properties of the solvent one wants to reproduce, e.g. phase
changes and dielectric constants. With regard to water, a large variety of explicit models
have been developed employing at least up to six sites for parameterization [78, 79].
Widely used examples are the SPC [80], SPC/E [81], TIP3 [82], TIP2P/TIP3P/TIP4P
[83], and MCDHO [84]. The high number of water models indicates the challenge in
reproducing all properties accurately, especially with regard to varying conditions. In
this context, special attention has to be paid e.g. on polarizability and induced dipols
[30]. For reviews sce e.g. ref. [85]. In addition, implicit water models have gained inter-
est in recent decades to reduce the overall computational requirements, while describing

the molecules of interest with atomistic resolution [86-94]. Examples are semi-heuristic
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methods like ASP [95], Generalized-Born models [96], or more generally ones based on

Poisson-Boltzmann theory [97]. For reviews see e.g. refs. [98-102].

In summary, molecular dynamics provides an established and still heavily researched
framework for studying molecular phenomena on atomistic scales under the assumption
of non-relativity and applicability of the Born-Oppenheimer approximation. Applica-
tions extend from crystal cracks / defects [103] to protein folding [104], protein-ligand
binding [105], and protein-protein interaction [106]. Various molecular dynamic codes
are available, both free and commercial, in order to investigate chemical, biological,
and other systems. Examples are the codes AMBER, CHARMM, GROMACS, TIN-
KER, OpenMM, NAMD, and LAMMPS. For MD simulations in this work the code

GROMACS was used, as it provides a free and open-source platform.

1.2.2 Coarse-Graining in Space and Time

In order to investigate systems on larger scales of length and time, various methods have
been developed beyond atomistic MD [30]. These methods employ the same ideas based
on classical mechanics, but perform coarse-graining with regard to space, i.e. reduction
of the degrees of freedom by combining multiple atoms to a unit/bead, as well as time,
e.g. neglecting inertia terms. In the following, the most widely employed approaches will

be presented. For reviews see e.g. refs. [30, 107-111].

Generally speaking, every coarse-graining approach consists of a structural and a func-
tional model. The structural model separates the system into relevant (explicit)
and omitted (implicit) degrees of freedom (DOF) / particles, and provides a map-
ping methodology to combine multiple relevant atoms / particles into a coarse-grained
bead. The functional model provides a coarse-grained force-field describing the
interaction between coarse-grained beads and possibly implicit aspects of the omitted
DOF. As a result, coarse-grained approaches are inherently more specialized and less
transferable than all-atom descriptions. Existing coarse-grained models thus employ a
variety of approaches for definition and parameterization of the structural and functional
model. Before going into their detail, a more general formalism based on a bottom-up
abstraction will be provided following Berendsen [30]. With regard to mathematical
formulations, this will be restricted to the cartesian degrees of freedom in their center

of mass. For generalized coordinates the reader is e.g. referred to ref. [30].

The Mori-Zwanzig projection-operator formalism [112-114] presents a systematic
(bottom-up) approach to derive the evolution of a subsystem in phase space. Based on

this, the equation of motion for the relevant (explicit) particles i (omitted/implicit j)
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becomes [30]

t
= cG - N
mid; = - VU; — Z/ mivij(T)&i(t — 7)dT + i (1) ) (1.5)
= JO
J
——
systematic forces friction forces random forces
between explicit DOF from implicit DOF from implicit DOF
(CG beads)

where m; is the mass of the bead, i; its acceleration, and UZ-CG the coarse-grained
potential describing the systematic forces between beads (to be defined later, often
called potential of mean force). Effects of the omitted (implicit) DOF are captured
through the frictional forces resulting from the friction kernel ;; (including its time
dependence), as well as the random forces 77;. Note that this formulation assumes the
systematic force (gradient of potential of mean force) to be curl free, frictional forces
to be linearly dependent on velocity (i.e. laminar flow with a Reynolds number of less
than one for macroscopic systems), and omitted (implicit) DOF to equilibrate much
faster than relevant (explicit) DOF. This formulation is equivalent to the generalized
Langevin equation® [116] and one arrives at the following Langevin Dynamics (LD)
formulation in the memory-free Markovian limit® applicable for the time scales of coarse-

grained simulations as

mit; = —VUICG — mividi + 7, (1.6)
or more commonly written in 1D as

mi = —VUC — myi + VI, (1.7)

where the random force is decomposed into a constant ¥ and a normally distributed
random number ¢ with zero mean, unit variance, and no correlation in time”. Resulting

from the assumption of a stationary process with time-independent velocity correlations

SLangevin’s equation was introduced in 1908 by Paul Langevin [115] as a stochastic differential
equation to describe Brownian motion of particles in a fluid. Newton’s equation of motion is extended
by a random exciting force and systematic damping force, which represent the collision with high-velocity
fluid molecules and the fluid drag, respectively. The equation is discretized in Langevin Dynamics (LD)
and frequently employed in coarse-graining approaches to represent the forces of neglected degrees of
freedom through friction and noise, see e.g. ref. [30]. As a result, it acts essentially as a thermostat and
enforces a canonical ensemble, while accounting for the solvent (similar to an implicit solvent model,
but not accounting e.g. for electrostatic screening) and neglected degrees of freedom implicitly.

SFor works in the non-Markovian limit see e.g. ref. [117].

7As previously noted we assume the memory-free Markovian limit and omitted (implicit) DOF to
equilibrate much faster than relevant (explicit) DOF, which is reasonably fulfilled for most coarse-
graining applications. See e.g. discussion in ref. [30].
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of a canonical ensemble, the friction and random force are related by the fluctuation-

dissipation theorem [30]
U = 2m~ykpT. (1.8)

Note that while this is only generally valid without systematic forces, it yields con-
sistent dynamics with proper equilibrium fluctuations under the chosen assumptions
of a memory-free Markovian process [30]. For more details the reader is referred to
refs. [114, 118].

For practical purposes the question remains how to derive the friction coefficients. A
variety of approaches based on theory (e.g. Einstein [119], Debye [120], and Perrin
[121, 122]), experiments (e.g. FCS [123]), and detailed MD simulations (e.g. ref. [124])

have been explored.

Further note that many coarse-grained approaches do not employ this formalism and
the resulting LD-related formulation, thus do not include additional friction and random
forces resulting from the neglected degrees of freedom (e.g. MARTINI [53, 125, 126]).
Other approaches scale down these contributions by a factor between 10 - 1000 through
an effective viscosity [110, 127, 128]. While this is not expected to influence equilibrium
properties, their dynamics are likely to be accelerated [30]. In the context of this work,
this formalism and resulting Langevin Dynamics will be employed later in the limit of
representing entire macromolecules as (ultra-)coarse-grained beads in implicit solution.
Thus, the friction and random forces represent specifically the solvent and their parame-
terization is performed using detailed MD simulations. In the same context, it should be
noted that for the simulation of non-dilute solutions in addition to the systematic force
between coarse-grained beads accounting for hydrodynamic interaction, i.e. forces result-
ing from their relative velocities coupled through the solvent, can become important.

More detail on hydrodynamic interaction is provided in App. A.3.

Having accounted for the omitted DOF through implicit random and friction forces, the
remainder of this section will focus on the derivation and parameterization of coarse-
grained force-fields describing the systematic forces between beads. Note that these
forces are not necessarily pairwise additive, but may also include multi-body contribu-
tions. In their functional description they are often closely related to atomistic force-
fields (see eq. 1.3, also termed neoclassical [110]), but alternative descriptions through
e.g. neural networks have found increasing interest in recent years [129-131]. In or-
der for the respective force-fields to be parameterized, a variety of approaches exist
in literature, which are often classified as bottom-up, top-down, or hybrid approaches

[108, 110]. Bottom-up approaches parameterize the coarse-grained force-fields using



