
Chapter 1

Introduction

1.1 From causation to causality

The most effective vessel for bringing our thoughts from one state to the

desired other, anchored in the essence of reasoning, is logic. It gives us

insight into most peoples’ thinking mechanisms and provides a robust

tool in the search for knowledge and truth to anyone who is not afraid

to find them.

We use argumentation known as inference (Ross, 1924), to rationalize

something within our mind. This process increases or decreases our

proclivity to believe the thought we wanted to rationalize or helps us

see why it must be true. The question of why something must be true

or even why something is does not simply make us think, but makes us

think causally.

To gain a perspective on the theory of causality, we will embark on a

brief guided tour through its history. In the middle of Fig. 1.1, we see

a statue of Aristotle, who was the first to introduce a theory of causal-

ity (Falcon, 2023) in his efforts to understand how humans experience

the physical world around them. He built upon and formalized the

thoughts of his contemporaries, conceiving four types of explanations
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Figure 1.1: The Hall of Causation. Illustration created by the author.

that comprise causation: material, formal, efficient, and final cause. To

determine those causes and learn why something is in its current state

or form, one needs to answer the following questions (Ross, 1924): Out

of which material is something composed? What shape or form does it

have? What is its primary source of the change or rest? What purpose

does it fulfill?

Aristotle’s thoughts on causality were so profound that they influenced

philosophers centuries and even millennia later. In the middle ages, the

most prominent thinker was Thomas Aquinas (the third portrait on the

left in Fig. 1.1). He mainly relied on early causation ideas to rationalize

the cause of existence. Moreover, he expanded the theory of causality by

stating that the final cause comes first and manifests itself through the

efficient causes, which can be regarded as instrumental, but subservient

to it (Aquinas, 1265-1274).
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The idea of causation developed further in the next few centuries

and was slowly becoming more scientific. However, it was still orbiting

around proving the existence of a divine creator. René Descartes, a great

thinker, philosopher, and mathematician, whose portrait is the second

on the left in Fig. 1.1, supported the idea that the cause of anything

needs to contain at least as much reality as the effect, either formally

or eminently (Williams, 1978). For instance, a cup of tea is hot because

of the tea being hot, making the tea temperature a formal cause of the

state of the cup. However, possessing a water boiler (and a tea bag) is

an eminent cause of the cup heating up.

In order to grow and improve any idea, no matter how great it seemed

at a time, it should be analyzed, challenged, and open for discussion.

Gottfried Wilhelm Leibniz, portrayed the first on the left in Fig. 1.1, was

the one to do precisely this regarding his predecessors’ views on causa-

tion. He reasoned their arguments away and proposed a different theory

of cause and effect. Namely, he stood firmly behind the thought that

each monad, a simple substance reflecting the order of the world, had

inherent properties according to which it would be the only source of its

modifications (Hulswitt, 2002). In this sense, all cause-effect relation-

ships are completely predestined, and necessarily, the effects logically

follow their causes.

Now we turn to the first portrait on the right in Fig. 1.1, depicting

Leibniz’s contemporary, English scientist Isaac Newton. Newton was

one of the prominent individuals contributing to the philosophical revo-

lution called the Enlightenment, and equally revolutionary was his stance

on causality. He explicitly denies that every event must have a cause,

implying that there is no law of universal causation (Collingwood, 1938).

This further indicates that a fundamental distinction must be made be-

tween causation and a law-like behavior, such as motion according to

his first law (Hulswitt, 2002).
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Another mathematician and philosopher to disagree with his prede-

cessors and conceive a different concept of the cause was Immanuel Kant,

portrayed next to Newton in Fig. 1.1. He was provoked to thought af-

ter reading the work of Hume that causation cannot be rationally justi-

fied, yielding that one cannot rationally account for scientific knowledge

(Hulswitt, 2002). A new idea of Kant that would mitigate this issue

was to declare causality an a priori concept. He further differentiated

between effects following their causes as a matter of fact and following

them necessarily. Kant stood by the latter principle and claimed that

it was governed by a universal rule known to us a priori and not from

experience (Hulswitt, 2002).

The last portrait in Fig. 1.1 on the right depicts an English philoso-

pher, and a political economist, John Stuart Mill. He criticized the

contemporary notion of a cause as being selected from a broader set of

causes just because it occurred the last or was superficially the most

apparent (Mill, 1874). However, he did not define cause as just the set

of all involved conditions necessary for the effect to materialize, but it

had to do so unconditionally (Hulswitt, 2002).

The balance between these differing views on causality throughout

history would be recognizing that there are more causes to a specific

event but that not all of them are relevant. Therefore, the correct course

of further action is prioritizing causes that could have the highest impact

on future events. In the more modern and formal sense, however, the

concept of causality still takes multiple shapes.

In 1956, a US-American mathematician Norbert Wiener proposed

that one variable could be called ’causal’ to another if the prediction

of the second one is improved by including information about the first

(Wiener, 1956). This idea was practically implemented by the economics

Nobel Prize winner, Granger (1969), and the concept is known as the

Wiener-Granger causality ever since.
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Forty years later, a computer scientist, Judea Pearl, proposed graph-

ically analyzing causal effects using a tool known as the calculus of

interventions, or do-calculus (Pearl, 2009). We introduce this causality

analysis tool in detail in Chapter 2 and rely on it throughout this thesis.

We now end the guided tour through the history of causation, as we

proceed to explore the ways of using expert knowledge, which can aid in

directing automated causality analysis and decision-making on specific

domains.

1.2 Domain knowledge integration

The purpose of defining causal reasoning throughout history was to un-

cover the truth and gain ever more knowledge about the world.

In our time, when vast amounts of data are becoming available each

day, one could assume that, in turn, at least as much knowledge is

gained daily. That is still unfathomably more than even a few years ago.

However, it is one thing to collect data, and another, usually much more

complex, to extract meaningful information from it and draw conclusions

resulting in new knowledge.

In the realm of machine learning research, we are not only interested

in obtaining useful information from data but also in having a computer

learn everything it possibly can about it. We then either want it to tell us

if it can recognize a similar data example, generate a new one, or describe

the underlying process according to which the data was created in the

first place. In some cases, no matter how much data we use to train the

machine, obtaining the underlying data-governing process is impossible.

This obstacle is illustrated by the model of population growth, known

as the logistic map (Verhulst, 1838):

xt+1 = r · xt · (1− xt), (1.1)
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Figure 1.2: Deforested region of Amazon rainforest.
Source: earthobservatory.nasa.gov

for xt ∈ [0, 1], t ∈ N, r ∈ [0, 4]. It is shown to be non-learnable when

r = 4, as its behavior becomes chaotic (Wang, 2017).

Climate science is another great example of an entire research do-

main where comparably few advances have been made despite big data.

Due to data complexity and the ever-changing Earth system, Faghmous

and Kumar (2014) made a case for theory-guided data science, i.e., for

domain knowledge integration.

Expert knowledge that gets integrated to improve machine learning

architectures’ efficacy considerably varies in format and type, depending

on the domain. It can take a form of an equation describing certain

physical phenomena, textual information gathered from reliable online

sources, an insight about a pattern in remote sensing images denoting

deforestation to experts (see Fig. 1.2), and many others.

We will now introduce a concept that, along with causality analy-

sis, allows for domain knowledge integration in its more general form,

in an attempt to make certain forms of reasoning more accessible to

computers.
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(a) Bayesian network (b) Markov random field

Figure 1.3: Examples of probabilistic graphical models.

1.3 Probabilistic graphical models

Artificial neural networks’ lack of interpretability is the main obstacle

currently preventing the wider use of artificial intelligence in fields where

the rationale behind critical decision-making is of utmost importance,

such as medicine and finance. One step towards mitigating this problem

is using Probabilistic Graphical Models (PGMs) (Koller and Friedman,

2009) alongside purely data-driven methods.

PGMs are a framework combining uncertainty and logical structure

through the use of probability, graph theory, and independence con-

straints. More precisely, they are graphical representations of com-

plex multivariate joint distributions between random variables shown as

nodes and connected with edges. The most well-known types of PGMs

are directed acyclic graphs (DAGs), also known as Bayesian networks

(BNs) (Howard and Matheson, 2005; Pearl, 1988), and undirected graph-

ical models or Markov Random Fields (MRFs) (Kindermann and Snell,

1980), respectively shown in Fig. 1.3a, and Fig. 1.3b for random vari-

ables W,X, Y , and Z. Particularly, in addition to being directed, the

underlying graph of a BN must also be acyclic.

Inspired by the argumentation process happening in our minds when

trying to arrive at a logical conclusion with high certainty, PGMs allow

reasoning about random variables of interest by using their distribu-
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tion for inference. Namely, certain inference algorithms can be applied

to estimate the posterior probability of desired variables given infor-

mation about specific others. For instance, to discover how likely it

is for a hurricane to form over the Atlantic, let us assume that it is

summer and that the winds are stronger than usual. An inference algo-

rithm can then compute the probability P (Hurricane = true | Season =

summer,WindSpeedIncrease = true) and give us an estimated answer.

These probabilistic models can be effectively constructed using expert

knowledge within a certain domain or by learning the model from data.

Nevertheless, they are the most effective when these two approaches

are employed together. That is because experts can provide important

attributes and general guidelines the model should contain and follow.

In contrast, obtaining details is more potent when done automatically

by fitting the model to data (Koller and Friedman, 2009).

The success of this synthesis culminated through the use of graphical

models in combination with deep neural networks (Kingma and Welling,

2014; Chung et al., 2015; Krishnan et al., 2017).

1.4 Variational inference

Uniting deep learning and PGMs would not have been possible with-

out variational inference (Blei et al., 2017). Complicated probability

distributions of PGMs used to be approximated by drawing samples

via Markov chain Monte Carlo (MCMC) methods described by Robert

and Richardson (1998). However, with more data flowing through deep

learning pipelines, this approach needed to be replaced by a more ef-

ficient one. That is why variational inference was introduced to find

a similar distribution that minimizes the Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951).

Variational inference has been applied in computer vision, computa-

tional neuroscience, and large-scale document analysis (Blei et al., 2017).
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The first method emerging as a union between deep learning and graphi-

cal models was the deep Boltzmann machine (Salakhutdinov and Hinton,

2009). Furthermore, a deep graphical model with the most traction at

present is a Variational Autoencoder (VAE) by Kingma and Welling

(2014). We will discuss the VAE in more detail in Section 2.5.1, and in

Chapter 7 we explain how its variants can be expanded for multivariate

time series causality analysis in difficult real-world scenarios.

1.5 Challenges

We will now examine some of the most prevalent challenges of time

series causality analysis and justify using deep graphical models to tackle

them. We note that some methods solve a few of the following challenges

simultaneously (see Section 7.2), but they are not as effective at tackling

a larger multitude of such obstacles at once. Moreover, they might be

limited to a specific domain.

One of the first challenges of causal link identification for classical

time series causality analysis models, i.e., models not using deep learn-

ing, arises when causal links are nonlinear. The nonlinearity oc-

curs, however, for many interactions in domains such as neuroscience,

finance, and climate science (Weber and Oehrn, 2022). For this reason,

using neural networks emerged as a natural choice due to the Universal

Approximation Theorem (see Theorem 2.4.1), i.e., the neural networks’

ability to model arbitrarily complex functions.

Another issue specific to time series data is the occurrence of delayed

causal effects. In environmental science, for instance, variables can af-

fect one another with a delay, known as time lag. One notable method

that tackles this problem was introduced by Sugihara et al. (2012), called

Convergent Cross Mappings (CCMs). It aims to measure how well the

cause variable X can be reconstructed from the history of the effect

variable Y , assuming that both variables stem from the same dynami-
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cal system. Using a Neural ODE latent process modeling, CCMs were

further extended by Brouwer et al. (2021a) to incomplete observations

at irregular intervals. Their method is an example of how using neural

networks can improve a successful causality analysis method and make

it more data-driven even when data is imperfect.

Causal relationships of real-world data that originates from dynamical

mechanisms over time, also known as dynamical systems, change accord-

ing to those mechanisms. This often makes that data nonstationary

(Box and Jenkins, 1970; Hargreaves, 1994), which promotes misleading

results if an unsuitable method that assumes stationarity is applied for

causal discovery.

Furthermore, in real-world scenarios, two variables we are causally

interested in are often influenced by a third, unobserved one. This is

the problem of hidden confounding, and the unobserved variable is

referred to as the hidden confounder. When it occurs, the causal link

between the variables of interest may be falsely detected due to the

influence of the hidden confounder. One of the approaches to determine

if the causal link is actually present is to use deconfounding methods

(Bica et al., 2019; Hatt and Feuerriegel, 2021) and generate proxies of

the hidden confounders. Another strategy would be to intervene on

the potential cause variable in the sense of do-calculus (Pearl, 2009) to

remove the influence of the confounding variable.

However, it is often the case that controlled experiments using direct

interventions are infeasible, costly, or unethical. For example,

one cannot intervene on the air temperature over a particular geograph-

ical region, and should not manipulate experimental results to support a

certain hypothesis. Deep learning is particularly beneficial in such cases

as it enables data-driven approaches and, in combination with counter-

factual reasoning, it can provide useful answers without tangibly altering

the examined system.
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