Table of Content

A	ckr	now	ledg	ments	1
A	uth	or's	De	claration	2
Р	UB	LIC	ATI	ONS	3
Т	abl	e of	Со	ntent	6
Li	ist (of F	igur	es	14
Li	ist (of T	able	os	28
1	ı	Intro	oduc	ction	29
	1.1	1	Obj	ectives	33
	1.2	2	The	esis Outline	34
2	ı	Lite	ratu	re Review	36
	2.	1	Pre	vious Work	36
	2.2	2	Sur	nmary	40
3	-	Tec	hnic	al Background	41
	3.′	1	Veg	getable Oils	41
	3.2	2	Bio	diesel	42
	3.3	3	Fue	el stability	48
	3.4	4	Oxi	dation	49
	3.5	5	Eng	gine oil	57
	;	3.5.	1	Oxidation of lubricant base oil	59
	;	3.5.	2	Dominant mechanisms of degradation	62
	3.6	ŝ		dative stability of biodiesel and its effect on performance	
	3.7	7	Ent	ry of fuel into the engine oil	64
	3.8	3	Effe	ect of biodiesel on engine oil	64
4	ı	Bas		xperimental Techniques for Evaluation	
	4.	1	Tec	hniques for evaluating the suppression of oligomers formation	67
	4	4.1.	1	Size Exclusion Chromatography (SEC)	68
	4	4.1.	2	Gas Chromatograph-Mass Spectroscopy (GCMS)	
	4	4.1.	3	Total Acid Number or Value (TAN)	69
	4	4.1.	4	Viscosity and Density	70

	4.1.5	Fourier Transform Infrared Spectroscopy (FTIR)	72
	4.1.6	Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS)	74
	4.1.7	Gas Chromatography-Flame Ionization Detector (GC-FID)	75
	4.1.8	Induction Period	75
	4.1.9	Dielectric property measurement	77
	4.1.10	NMR measurement	80
5	The foo	us of the Thesis	82
6	Selection	on of Adsorbents	88
	6.1 Sup	ppression of oligomers formation	88
	6.2 The	e capacity of adsorbents in suppressing Oligomers formation	98
7	Materia	ls and Methods	104
	7.1 Ch	emicals	104
	7.2 Inv	estigated Fuels and Oil	104
	7.3 Ne	at additives	108
	7.4 Sim	nulated Aging Procedure	109
	7.4.1	Laboratory setup apparatus	109
	7.4.2	The Metrohm 873 biodiesel Rancimat	111
	7.5 Inv	estigation of suppression of oligomer formation	111
	7.5.1	Linoleic acid methyl ester (C18_2 ME)	112
	7.5.2	Rapeseed oil methyl ester (RME)	113
		Investigating the effect of the combined adsorbents of magnesium- im hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- /benzyl) benzene in a ratio of 1:2 respectively on the oil additives	114
	7.6 Sta	bilization of biodiesel and its blends using combined adsorbents of m-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- enzyl) benzene in a ratio of 1:2, respectively	
	7.6.1 aluminu hydroxy	Investigating the effect of the combined adsorbents of magnesium- im hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- /benzyl) benzene in a ratio of 1:2 respectively on oxidative stability of el and its blends at 170 °C	
	hydroxy	Investigating the effect of the combined adsorbents of magnesium- im hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- /benzyl) benzene in a ratio of 1:2 respectively on oxidative stability of el and its blends at 110 °C	118

	hydroxy	Investigating the effect of the combined adsorbents of magnesium- um hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4- ybenzyl) benzene in a ratio of 1:2 respectively on the storage stability o el and its blends at 40 °C	
	7.7 Me	asurement techniques	121
	7.7.1	Induction period	122
	7.7.2	Size Exclusion Chromatography (SEC)	123
	7.7.3	Gas Chromatograph-Mass Spectroscopy (GCMS)	124
	7.7.4	Total Acid Number (TAN) or Acid value	124
	7.7.5	Viscosity and Density	125
	7.7.6	Fourier Transform Infrared Spectroscopy (FTIR)	125
	7.7.7	Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS)	126
	7.7.8	Gas Chromatography-Flame Ionization Detector (GC-FID)	128
	7.7.9	Dielectric properties measurement	128
	7.7.10	NMR measurement	129
8	Results	s and Discussion	130
	hydrotalc a ratio of	restigating the effect of the combined adsorbents of magnesium-aluminusite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benz 1:2 respectively in suppressing oxidation in base oil blended with linole ster (C18_2 ME)	ene in ic acid
	8.1.1	Gas Chromatography	131
	8.1.2	Size Exclusion Chromatography (SEC)	133
	8.1.3	FTIR analysis	136
	8.1.4	Acid value	143
	magnesit hydroxyb	restigating the effect of temperature on the combined adsorbents of um-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-enzyl) benzene in a ratio of 1:2 respectively in suppressing oxidation in 80 % base oil and 20 % rapeseed oil methyl ester	а
	8.2.1	Size Exclusion Chromatography (SEC)	147
	trimethy respect airflow	The acid value of 80 % base oil blended with 20 % RME and treated value combined adsorbents of magnesium-aluminum hydrotalcite and 1, yl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively and aged at temperatures of 70 °C, 110 °C, 140 °C and 170 °C word of 10 L/h for 8 h per day for a total of 80 h with Rancimat and compared tunaged blend.	,3,5- vith d with

l i	hydrota in a rati 170 °C	Effect of adsorbents on the viscosity of 80 % base oil blended with 20 % and treated with and without combined adsorbents of magnesium-aluminur licite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benze of 1:2 respectively and aged at temperatures of 70 °C, 110 °C, 140 °C a with airflow of 10 L/h for 8 h per day for a total of 80 h with Rancimat and ed with the neat unaged blend	m ene and d		
1	respecti with and and 170	Impact of combined adsorbents of magnesium-aluminum hydrotalcite an methyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1 ively on the density of 80 % base oil blended with 20 % RME and treated di without the adsorbents and aged at temperatures of 70 °C, 110 °C, 140 °C with airflow of 10 L/h for 8 h per day for a total of 80 h with Rancimal npared with the neat unaged blend	l:2 °C t		
i	hydrota in a rati	FTIR evaluation of neat and aged 80 % base oil blended with 20 % RME ated with and without combined adsorbents of magnesium-aluminum lcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benze to of 1:2 respectively and aged at temperatures of 70 °C, 110 °C, 140 °C awith airflow of 10 L/h at 8 h per day for 80 h with Rancimat	ene and		
be	uminum nzene i	estigating the effect of the amount of combined adsorbents magnesium- hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenz n a ratio of 1:2 respectively in suppressing oxidation in rapeseed oil meth base oil blend	ıyl		
1	trimethy respecti	GCMS analysis of 80 %base oil blended with 20 % RME biodiesel treated without combined adsorbents magnesium-aluminum hydrotalcite and 1, vl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 ively and aged at 170 °C with airflow of 10 L/h at 8 h per day for a total of the Rancimat	3,5- 80		
1	magnes hydroxy	Size exclusion chromatography (SEC) analysis of 80 %base oil blended % RME biodiesel treated with and without combined adsorbents sium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-2) benzene in a ratio of 1:2 respectively and aged at 170 °C with of 10 L/h for 80 h using the Rancimat			
	8.3.3	Acid value	179		
	8.3.4	Viscosity	181		
i	8.3.5	Density			
1	8.3.6 FTIR evaluation of 30 mL 80 %base oil blended with 20 % RME biodiesel treated with and without various amounts of combined adsorbents magnesium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 respectively and aged at 170 °C with				
	-	of 10 L/h for 80 h using a Rancimat	186		

8.3.7	Impact of adsorbents on metallic oil additives	3
8.3.8	Impact of adsorbent on organic additives in the oil	9
trimethyl-	ing combined adsorbents of magnesium-aluminum hydrotalcite and 1, 3,52,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 rely to cause stabilization of biodiesel and its blends at 170 °C	3
hydrota in a rat	SEC analysis of biodiesel blends (20 %RME mixed with 80 %diesel fuel) I with and without 1 g combined adsorbents of magnesium-aluminum alcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene tio of 1:2 respectively and aged at 170 °C with airflow of 10 L/h using a nat	
trimeth respec	GCMS analysis of 80 %diesel fuel mixed with 20 %RME treated with and t combined 1 g adsorbents of magnesium-aluminum hydrotalcite and 1,3,5-yl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively and aged at 170 °C with airflow of 10 L/h for 48 h at 8 h per day using anat	
1,3,5-tr respec	The total acid value of 80 %diesel fuel mixed with 20 %RME treated with thout combined 1 g adsorbents of magnesium-aluminum hydrotalcite and rimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively and aged at 170 °C with airflow of 10 L/h for 48 h at 8 h per day using a nat	
1,3,5-tr respec	Results of viscosity of 80 %diesel fuel mixed with 20 %RME treated with thout combined 1 g adsorbents of magnesium-aluminum hydrotalcite and rimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively and aged at 170 °C with airflow of 10 L/h for 48 h at 8 h per day using anat	
respec	Effect of combined adsorbents of magnesium-aluminum hydrotalcite and rimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively on the density of 80 %diesel fuel mixed with 20 %RME and aged at with airflow of 10 L/h for 48 h at 8 h per day using a Rancimat	0
magne hydrox	Interrelationships between acid value, viscosity, and density of 80 %diesel xed with 20 %RME treated with and without combined 1 g adsorbents of sium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-ybenzyl) benzene in a ratio of 1:2 respectively and aged at 170 °C with of 10 L/h for 48 h at 8 h per day using a Rancimat	2
trimeth respec	FTIR analysis of 80 %diesel fuel mixed with 20 %RME treated with and t combined 1 g adsorbents of magnesium-aluminum hydrotalcite and 1,3,5-yl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 tively and aged at 170 °C with airflow of 10 L/h for 48 h at 8 h per day using a nat	

adsorben	bilization of biodiesel and its blends at 110 °C using 0.225 g combined ts of magnesium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-4-hydroxybenzyl) benzene in a ratio of 1:2, respectively231
8.5.1	Induction period measurements
1,3,5-tr	SEC analysis of 30 mL 20 % RME mixed with 80 % diesel fuel treated with hout 0.225 g combined adsorbents of magnesium-aluminum hydrotalcite and imethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 ively using a Rancimat at 110 °C with airflow of 10 L/h at 8 h per day 233
respect	Effect of combined adsorbents of magnesium-aluminum hydrotalcite and imethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 ively on the acid value of 20 %RME and 80 % diesel fuel blend during the on process
	Impact of combined adsorbents of magnesium-aluminum hydrotalcite and imethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 ively on the viscosity of biodiesel blend during aging at 110 °C
	Analysis of the impact of combined adsorbents of magnesium-aluminum alcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene to of 1:2 respectively on the density of biodiesel blend during aging at 110 °C 240
magnes hydroxy airflow	Relationship between viscosity and an acid value of 20 % RME mixed with iesel fuel and treated with and without combined 0.225 g adsorbents of sium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-ybenzyl) benzene in a ratio of 1:2 respectively and aged at 110 °C with of 10 L/h for durations of 20 h, 40 h, 60 h, and 80 h at 8 h per day using a lat
with 0.2 trimethy respect	FTIR analysis of 30 mL 20 % RME mixed with 80 % diesel fuel and treated 225 g combined adsorbents of magnesium-aluminum hydrotalcite and 1,3,5-yl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of 1:2 ively and aged at 110 °C with airflow of 10 L/h at 8 h per day for durations of 0 h, 60 h and 80 h using a Rancimat
hydrotalci a ratio of	estigating the effect of the combined adsorbents of magnesium-aluminum ite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in 1:2 respectively in stabilizing rapeseed oil methyl ester and its blends during storage conditions
8.6.1	Evaluation of induction period of neat biodiesel
8.6.2	The induction period of biodiesel blends
8.6.3 treated	SEC analysis of aged 40 mL of 80 %diesel fuel blended with 20 %RME with and without 0.675 g of combined adsorbents of magnesium-aluminum

		alcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) ben: io of 1:2 respectively and stored at 40 °C in an oven from 0 up to 120 da 255	
	1,3,5-tr	Assessment of total acid values of 40 mL of biodiesel treated with and 0.675 g of combined adsorbents of magnesium-aluminum hydrotalcite a imethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene in a ratio of tively stored at 40 °C from 0 up to 120 days	1:2
	hydrota	Evaluation of total acid values of 80 %diesel fuel blended with 20 %RM with and without 0.675 g of combined adsorbents of magnesium-alumin licite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzio of 1:2 respectively and stored at 40 °C from 0 up to 120 days	um zene
	in a rati	Impact assessment of combined adsorbents of magnesium-aluminum alcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzio of 1:2 respectively on the viscosity of 80 % diesel fuel blended with ME	
	hydroxy	Investigation of the effect of the combined adsorbents of 0.675 g sium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butylybenzyl) benzene in a ratio of 1:2 respectively on the density of 40 mL 80 uel blended with 20 %RME stored in an oven at 40 °C for 120 days	Э %
	di-tert-b	FTIR analysis of neat biodiesel treated with and without combined 0.67 ents of magnesium-aluminum hydrotalcite and 1,3,5-trimethyl-2,4,6-tris(3 outyl-4-hydroxybenzyl) benzene in a ratio of 1:2 respectively and stored and the oven for up to 120 days	3,5- at
	hydrota	FTIR analysis of biodiesel blends, 80 %diesel fuel mixed with 20 %RMI with and without combined 0.675 g adsorbents of magnesium-aluminum alcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzio of 1:2 respectively and stored at 40 °C in an oven for up to 120 days	n zene
8	.7 Coi	nfirmation of suppression of oligomers formation	. 272
	in a rati	Effect of 0.675 g combined adsorbents of magnesium-aluminum slcite and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzio of 1:2 respectively on relative permittivity of 80 % base oil blended with ME and aged at 170°C	h
	8.7.2	The dissipation factor	. 275
	8.7.3	Acid value	. 276
	8.7.4	NMR	. 278
	Conclus	sion, outlook, and recommendation	. 289
9	.1 Coi	nclusion	. 289

9.2	2 Outlook and Recommendation	293
Bibli	ography	295
10	Appendix	322
11	Glossary	331