
Introduction

This book1,2 presents original mathematical models of phase-transformation
stresses in composite materials, along with mathematical models of phase-
transformation-stress induced micro-/macro-strengthening and phase-transfor-
mation-stress induced intercrystalline or transcrystalline crack formation. The
materials consist of an isotropic matrix with isotropic ellipsoidal inclusions.

These stresses originate during a cooling process at the phase- transforma-
tion temperatureTtq, and are a consequence of the difference between dimen-
sions of crystalline lattices, which are mutually transformed during the phase-
transformation process in the inclusions (q = IN) or the matrix (q = M).

The mathematical models are determined for a suitable model system. The
model system is required to correspond to real isotropic matrix-inclusion com-
posites. The phase-transformation stresses are derived within a suitable coordi-
nate system. The coordinate system is required to correspond to a shape of the
ellipsoidal inclusions.

The mathematical determination results from mechanics of an isotropic elas-
tic continuum, and result in different mathematical solutions for the phase-
transformation stresses. Due to these different mathematical solutions, the prin-
ciple of minimum elastic energy is considered.

The mathematical models of the phase-transformation stresses, which re-
sult from the superposition method, along with the mathematical models of
the phase-transformation-stress induced micro-/macro-strengthening and crack
formation, include microstructural parameters of a real matrix-inclusion com-
posite, i.e., the inclusion dimensionsa1, a2, a3, the inclusion volume fraction
vIN, as well as the inter-inclusion distanced = d(a1,a2,a3,vIN).

Consequently, the mathematical models are applicable to composites with
ellipsoidal inclusions of different morphology, i.e.,a1 ≈ a2 ≈ a3 (dual-phase

1 This book was reviewed by the following reviewers:
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2 This book was supported by the Slovak scientific grant agency VEGA 2/0069/24.
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steel),a1 ≫ a2 ≈ a3 (martensitic steel).
In case of a real matrix-inclusion composite, such numerical values of the

microstructural parameters can be determined, which result in maximum val-
ues of the micro- and macro-strengthening, and which define limit states with
respect to the intercrystalline or transcrystalline crack formation in the matrix
and the ellipsoidal inclusion. This numerical determination is performed by a
programming language. The mathematical procedures in this book are analysed
in Appendix (see Section 10.4).
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Chapter 1

Matrix-Inclusion Composite

1.1 Model System

Figure 1.1 shows a model system, corresponding to real matrix-inclusion
composites, which is considered within the mathematical models of the phase-
transformation stresses. This model system consists of an infinite isotropic
matrix and isotropic ellipsoidal inclusions with the dimensionsa1, a2, a3 and
the inter-inclusion distanced along the axesx1, x2, x3 of the Cartesian system
(Ox1x2x3), respectively, whereO represents a centre of the ellipsoidal inclu-
sion.

Figure 1.1: The matrix-inclusion system with an infinite isotropic matrix and
isotropic ellipsoidal inclusions with the dimensionsa1, a2, a3 and the inter-
inclusion distanced along the axesx1, x2, x3 of the Cartesian system(Ox1x2x3),
respectively, whereO represents a centre of the ellipsoidal inclusion.

As presented in [1]–[22], the phase-transformation stresses are determined
in the cubic cells with the dimensiond along the axesx1, x2, x3 and with central
ellipsoidal inclusions (see Figure 1.2). Due to the infinite matrix, the phase-
transformation stresses, which are determined for one of the cubic cells, are
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identical with those, which are determined for any of the cubic cells [1]–[22].
With regard to the volumeVIN = 4πa1,a2a3 [23] andVC = d3 of the ellipsoidal
inclusion and the cubic cell, the inter-inclusion distanced as a function of the
inclusion volume fractionvIN is derived as

vIN =
VIN

VC
=

4πa1a2a3

3d3 ∈
(

0,
π
6

)

, d =

(

4πa1a2a3

3vIN

)1/3

, (1.1)

where the valuevINmax= π/6 results from the conditionai → d/2 (i = 1,2,3).
Accordingly, the phase-transformation stresses are functions of the material
parametersa1, a2, a3, vIN, d.

Figure 1.2: The cubic cells with the dimensiond along the axesx1, x2, x3 of
the Cartesian system(Ox1x2x3) and with the planex12x3, whereO represents
a centre of the ellipsoidal inclusion, and (x12 ⊂ x1x2, x12x3 ⊥ x1x2. The phase-
transformation stresses in the cellA and the neighbouring cellsB are mutually
affected.

Additionally, the phase-transformation stresses in the cellA and the neigh-
bouring cellsB are mutually affected. In contrast to [1]–[13], [15]–[22], this
effect is explicitly determnined [14].

1.2 Coordinate System

Figure 1.3 shows the ellipseE with the dimensiionsa, b along the axesx, y,
respectively. The ellipseE is described by the function
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(x
a

)2
+

(y
b

)2
= 1. (1.2)

Any pointP of the ellipseE is described by the coordinates [23]

x = acosα, y = bsinα, α ∈ 〈0,2π〉 , (1.3)

where the normaln of the ellipseE at the pointP is derived [23]

Figure 1.3: The ellipseE with the dimensionsa, b along the axesx, y of the
Cartesian system(Oxy), respectively, and the pointP related to the angleα.

y =
xa tanα

b
−

(

a2−b2
)

sinα
b

. (1.4)

The phase-transformation stresses are determined by the spherical coordi-
nates(r,ϕν) (see Figure 1.4). The model system in Figures (1.1), (1.2) is sym-
metric, and then the phase-transformation stresses are determined within the
intervalsϕ ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉 [1]–[22].

Figure 1.4 shows the ellipsoidal inclusion forϕ,ν ∈ 〈0,π/2〉 with the centre
O and with the dimensionsa1 = O1, a2 = O2, a3 = O3 along the axesx1, x2,
x3 of the Cartesian system(O,x1,x2,x3) (see Figures (1.1), (1.2)), respectively.
Finally,

(

P,xn,xϕ,xν
)

is a Cartesian system at the pointP, where the axesxn

and xν represents a normal and a tangent of the ellipseE123 at the pointP,
respectively,x12x3 ⊥ x1x2, x12 ⊂ x1x2, xϕ ⊥ x12. Figure 1.5 shows the cross
sectionO567 of the cubic cell in the planex12x3 (see Figures 1.2, 1.4). The
angleν ∈ 〈0,π/2〉 defines a position of the pointP with the Cartesian system
(

P,xn,xϕ,xν
)

(see Figure 1.4) forν = ν0 (see Figure 1.5a),ν ∈ 〈0,ν0) (see
Figure 1.5b),ν ∈ (ν0,π/2〉 (see Figure 1.5c). The pointsP1, P2 represent inter-
sections of the normalxn with O567.
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With regard to Equations (1.2)–(1.4), the angleν0 represents a root of the
following equation [24]

cosν0

a3







d
√

a2
1cos2ϕ+a2

2sin2ϕ

2 f (ϕ) sinν0
+a2

3−
(

a2
1cos2ϕ+a2

2sin2ϕ
)






− d

2
= 0,

f (ϕ) = cosϕ, ϕ ∈
〈

0,
π
4

〉

; f (ϕ) = sinϕ, ϕ ∈
〈π

4
,
π
2

〉

, (1.5)

Figure 1.4: The inclusion with the centreO and with the dimensionsa1 = O1,
a2 = O2,a3 = O3 along the axesx1, x2, x3 of the Cartesian system(O,x1,x2,x3),
respectively, whereE12, E123represent ellipses in the planesx1x2, x12x3, respec-
tively, andx12x3 ⊥ x1x2, (x12 ⊂ x1x2, xϕ ⊥ x12. The pointP on the inclusion
surface is defined byϕ,ν ∈ 〈0,π/2〉, ν ∈ 〈0,π/2〉, and

(

P,xn,xϕ,xν
)

is a Carte-
sian system at the pointP, whereP ⊂ E123. The axesxn andxν represents a
normal and a tangent of the ellipseE123 at the pointP, respectively.

and this root is determined by a numerical method. The angleθ = ∠(xn,x3) is
derived as [24]

cosθ =

√

a2
1cos2ϕ+a2

2sin2ϕ
√

a2
1cos2ϕ+a2

2sin2ϕ+(a3 tanν)2
,

6

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.




