Introduction

This book-2 presents original mathematical models of

e thermal and phase-transformation stresses, which originate during a cool-
ing process in model material systems, i.e., multi-particle-envehope
trix and multi-particle-matrix systems, corresponding to real thred- a
two-component materials (see Chapters 2—-4), respectively,

o intercrystalline and transcrystalline crack formation in components of
these model material systems, including mathematical definitions of cri-
tical limit states with respect to the material crack formatiohjol is
induced by these stresses (see Chapter 5).

e material micro- and macro-strengthening in components of these model
systems, which is induced by these stresses (see Chapter 6).

The material strengthening and the limit states represent important phenom-
ena in material science and engineering. The multi-particle-envelop®&mat
and multi-particle-matrix model systems consist of isotropic sphericéities
with and without an isotropic spherical envelope on the particle surfacehwhic
are periodically distributed in an isotropic matrix (see Section 1.1). ifthe
terparticle distancd, the particle radiu®;, the envelope radir;, R, and the
particle volume fractionv, represent parameters of these model systems, as
well as microstructural parameters of three- and two-component materials

The multi-particle-envelope-matrix system corresponds to real three-com
ponent materials (see Section 1.1), which consist of
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e isotropic precipitates with an isotropic continuous component on their
surfaces, distributed in isotropic crystalline grains, e.g., matrigipitate-
envelope composites,

e isotropic crystalline grains with and without an isotropic continuous com-
ponent E) on their surfaces, and the crystalline grains exhibit identical or
different material properties, i.e., the real three-component matenmal
sists of the crystalline grais+ E, Aor A+ E, B, respectively, whera,

B represent crystalline grains with different material properties.

The multi-particle-matrix system corresponds to real two-component mate-
rials, which consist of

e isotropic precipitates, distributed in isotropic crystalline grains, eng-
trix-precipitate composites,

o two types of isotropic crystalline grains with different material propsrtie
e.g., dual-phase steel with the grains A and B.

The relationships between the model material components and those of the
real three- and two-component materials are determined in Section 1.1.

The thermal stresses are a consequence of different thermal expansion coe-
fficients of the matrix, the envelope and the particle. The phase-transformat
stresses are a consequence of a different dimension of a cubic crystalloe latt
(see Section 1.3), which is transformed in the material component. Matihema
cal and computational models of phenomena in infinite periodic model material
systems are determined within identical suitable cells, and eacbarghins a
central component with or without the envelope. Due to this infinity and peri-
odicity, the mathematical and computational models, which are determined for
a certain cell, are valid for any cell. Infinite matrixes are udad to simplicity
of mathematical solutions for material components (e.g., precipitates,)pores
The material components are small in comparison with macroscopic material
samples or macroscopic structural elements, and then the solutions are accept
able in spite of this simplification [1]. The mathematical models resudtsf
fundamental equations of mechanics of a solid continuum, with respect to its
shape, loading, mechanical constraints and the principle of minimum potential
energy.

Additionally, the stress fields, i.e., the thermal and phase-transfarmat
stresses, in neighbouring cells are mutually affected. The stressfieltbirtain
cell is then affected by those in neighbouring cells, and vice versa. In sbntra
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to [2, 3], this effect is explicitly determnined by the superposition method of
mechanics of a solid continuum (see Section 1.8.3) [4, 5].

The infinite multi-particle-envelope-matrix and multi-particle-natsys-
tems are imaginarily divided into cubic cells with the dimensiband with a
central spherical particle with or without the spherical envelope on theclgarti
surface, and the stresses are determined within the cubic cell (séenSet).
Mathematical solutions for these model systems correspond to real composites,
in contrast to

o the simple one-particle mathematical model in [6], which is determined
for a simple one-particle-matrix model system,

¢ the simple multi-particle mathematical model in [7], which is determine
for physically unacceptable mechanical constraints due to unsuitable cells
of a multi-paticle-matrix system.

Different mathematical procedures, which are applied to the fundamental
equations (i.e., Cauchy’s and equilibrium equations, Hooke's law), determined
with respect to a suitable ccordinate system (see Sections 1.2, 1.5),inesult
different mathematical solutions for the stresses in the matrix, théogevand
the particle (see Sections 1.6, 2.1, 3.1, 4.1). Finally, such a combination of the
different mathematical solutions for these components is considered to exhibit
minimum potential energy (see Section 1.7). The mathematical models are
determined by standard procedures of mechanics of a solid continuum, which
include definitions of

¢ such model material systems, which corresponds to real three- and two-
component materials (Section 1.1),

e such a coordinate system, which corresponds to geometry of the model
systems (Section 1.2),

e reasons of the thermal and phase-transformation stresses (Section 1.3),
¢ the loading of the model material systems (Section 1.4)

¢ the fundamental equations, which sre determined with respect to the co-
ordinate system (Section 1.5), and result in a system of differential equa-
tions (Section 1.6),

e elastic energy density, elastic energy and total energy of the model mate-
rial systems (Section 1.7),



e mechanical constraints, i.e., mathematical boundary conditions, for the
components of the model material systems (Sections 1.8.1, 1.8.2),

o the superposition method (see Section 1.8.3), which is considered within
the mathematical models of the thermal and phase-transformation str-
resses (see Section 1.8.3),

o different mathematical procedures (see Sections 2.1, 3.1, 4.1), which are
applied to the system of the differential equations (Section 1.7),

o final formulae for the thermal and phase-transformation stressesisstrai
elastic energy density and elastic energy (see Sections 2.2-2.5, 3.2, 3.3,
4.2,4.3),

e mathematical procedures to determine

— such critical radii of the spherical envelope and the spherical par-
ticle, which are reasons of cracks in the components of the model
material systems,

— shapes and dimensions of the component cracks,

o formulae for the micro-strengthening in the material components, along
with formulae for the macro-strengthening in the cubic cell, i.e., in the
multi-particle-envelope-matrix and multi-particle-matrix syste

The mathematical results in this monograph are then applicable within

e basic research (mechanics of a solid continuum, theoretical physics, ma-
terial science),

e the engineering practice, i.e., material technology,

e as well as within university undergraduate and postgraduate courses, as a
textbook on analytical material mechanics.

With regard to the basic research, the results of this monograph can be in-
corporated to mathematical models, which defines the disturbance of an ap-
plied stress field around inclusions in a solid continuum [8], as well as into
mathematical, computational and experi-mental models of overall mlateria
stresses, overall material strengthening, interactions of energyrsawith dis-
locations and domain walls, etc. The mathematical models include parameters
of the multi-particle-envelope-matrix and multi-particle-matrystem, i.e. vy,
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d, Ry, Ry, which represent microstructural parameters of real three- and two-
component composites, respectively. In case of real three- and two-component
composites, (the engineering practice), material scientists and ergjiceser
determine such numerical values of the microstructural parameters,

e which result in maximum values of the material micro- and macro-streng-
thening,

e which define the limit states (i.e., critical states) with regpethe inter-
crystalline or transcrystalline crack formation in the components of the
real composites.

In case of homogeneous or heterogeneous microstructure of a real composite
material, the microstructural parameters are defined by mean or locakioain
values, respectively. Consequently, the material scientists and ergycae
develop suitable technological processes, which result in such microstiuctur
parameters to obtain maximum strengthening, and to avoid the crack formation.

This numerical determination, performed by suitable programming langua-
ges, result from the mathematical procedure in Appendix. With respect to the
university courses, the fundamental equations of mechanics of a solid contin-
uum, along with the mathematical procedures, are explained and determined in
detail. As a textbook on analytical material mechanics, this monograph is then
suitable for non-specialists in mechanics of a solid continuum. Finally, Ap-
pendix presents such mathematical topics, which are required to perform the
mathematical procedures in this monograph.

Kogice, Slovak Republic Ladislav Ceniga
March 2025 Institute of Materials Research
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Chapter 1

Solid Continuum Mechanics

1.1 Model Material System

Figures 1.1a and 1.1b show model material systems, which correspond to real
three- and two-component materials [9], i.e., the multi-particle-epesmatrix

and multi-particle-matrix systems, respectively. The multi-pketenvelope-
matrix and multi-particle-matrix systems systems consist of isotrsierical
particles with and without an isotropic spherical envelope on their sunface,
spectively. The spherical particles with or without the spherical envelope a
periodically distributed in an isotropic infinite matrix with the interpele dis-
tanced along the axesg;, xp, x3 of the Cartesian syste(®©x;x2X3), where the
pointO is a centre of the spherical particle.

The model material systems are imaginarily divided into identical cubic
cells with the centr® and with the dimensiod. Each cell contains a central
spherical particle with or without the spherical envelope, wigrie a radius of
the particle, andR;, R, are radii of the envelope. The cubic cell represents such
a part of the model material systems, which is related to one spherical@art
The matrix is infinite along the axes, X2, x3. The model material systems
in Figure 1.1 are depicted in the plargc of the Cartesian systef®x;Xox3).

Due to infinity and periodicity of the model material systems, the same figure
is also considered for the planesa andxoxs.

As presented in [1], mathematical and computational models of phenomena
in infinite periodic model material systems are determined within idahigit-
able cells. Due to this infinity and periodicity, mathematical and comjmntak
results, which are determined for a certain cell, are valid for atly c

The mathematical models of the thermal and phase-transformation stresses
in the spherical particle, the spherical envelope, and the cell matrishéor
infinite and periodic model material systems in Figure 1.1 are determirtbthwi
the cubic cell. Infinite matrixes are used due to simplicity of matherabsiolu-
tions for material components (e.g., precipitates, pores, crystalline graimes
material components are small in comparison with macroscopic matanmal s
ples or macroscopic structural elements, and then the solutions are acceptable
in spite of this simplification [1].
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Figure 1.1: (a) The multi-particle-envelope-matrix and (b) the multi-plarti
matrix systems are imaginarily divided into identical cubic cells wité di-
mensiond and with a central spherical particle. The spherical particles with
and without a spherical envelope on their surface are periodically disulibute
the infinite matrix, wherdR; is a radius of the particle, arigh, R, are radii of
the envelope. The matrix is infinite along the ax@sxy, x3 of the Cartesian
system(Oxyxox3), whereO is identical with a centre of the spherical particles.
The thermal and phase-transformation stresses in thé et the neighbour-
ing cellsB are mutually affected.

Additionally, the stress fields, i.e., the thermal and phase-transfaomat
stresses, in neighbouring cells are mutually affected. The stress fliglwki
cell Ais then affected by those in the neighbouring cBlland vice versa (see
Figure 1.1). In contrast to [2, 3], this effect is explicitly determnined by the
superposition method of mechanics of a solid continuum [4, 5].

With regard to the volum¥p, = 4TtR?/3 andVc = d2 of the spherical par-
ticle and the cubic cell, respectively, the particle volume fractiprand the
interparticle distancd have the forms

Vp 4m(Ri\® ' C_(em\*?
Vp—\TC—g(F) € (0,Vimax) , d_R1<3_Vp> , 1=12

T /R
Vimax= 6 V2max:6<é) ) (1.1)

where vy max and vomax result from the conditiord = 2R; andd = 2R, for
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the multi-particle-matrix and multi-particle-envelope-matrix teyss, respec-
tively. Additionally, vp, d, Ry, Ro represent fundamental characteristics of real
two- and three-component material, which are determined by experimental and
computational techniques.

The multi-particle-envelope-matrix system in Figure 1.1a corresponds to
real three-component materials, which consist of

e isotropic precipitates with an isotropic continuous component on their
surfaces, distributed in isotropic crystalline grains, e.g., matrigipitate-
envelope composites,

e isotropic crystalline grains with and without an isotropic continuous com-
ponent E) on their surfaces, and the crystalline grains exhibit identical or
different material properties, i.e., the real three-component matenmal
sists of the crystalline grails+E, A or A+ E, B, respectively, whera,

B represent crystalline grains with different material properties.

The precipitates, the continuous component and the crystalline grains are
considered to represent the spherical particles, the spherical envelogeand
matrix of the multi-particle-envelope-matrix system, respedfivel

Similarly, the crystalline grains with the continuous component, the contin-
uous component and the crystalline grains without the continuous component
are considered to represent the spherical particles, the sphericab@aeld
the matrix of the multi-particle-envelope-matrix system, respeltiv

The multi-particle-matrix system in Figure 1.1b corresponds to real two-
component materials, which consist of

e isotropic precipitates, distributed in isotropic crystalline grains, eng-
trix-precipitate composites,

o two types of isotropic crystalline grains with different material propsrtie
e.g., dual-phase steel with the grains A and B.

Consequently, the precipitates and the crystalline grains are considered to
represent the spherical particles and the matrix of the multi-partielebarsys-
tem, respectively. Similarly, let the crystal graidisandB be characterized by
the volume fractionva andvg, respectively, wherea +vg = 1. If va < vg,
then the graing\ andB are considered to represent the spherical particles and
the matrix, respectively. W > vg, then the grainé\ andB are considered to
represent the matrix and the spherical particles, respectively, #f vg, then
the following energy analysis is required to be considered. Let the ghains
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and B be considered to represent the spherical particles and the matrix with
the elastic energWpa andWmg, which is accumulated in one spherical par-
ticle and the cell matrix (see Equations (1.63), (1.64)), respectively. Heet t
grainsA andB be considered to represent the matrix and the spherical particles
with the elastic energyVima andWyg, which is accumulated in the cell ma-
trix and one spherical particle (see Equations (1.63), (1.64)), respectively. |
Wpa +Wine < Wina+Wpg, then the graing\ andB are considered to represent
the spherical particles and the matrix, respectivelWgi +Wmg > Wma+Wps,

the grainsA andB are considered to represent the matrix and the spherical par-
ticles, respectively.

1.2 Coordinate System

The thermal and phase-transformation stresses are determined at trearbit
point P along the axes, X5, x; of the Cartesian systerfPx;x,x5) with the
unit vectorsey, &', &' (see Figure 1.2), respectively. The pofhts defined

by the spherical coordinatés ¢,v), which are considered due to the spherical
particles and spherical envelopes (see Figure 1.1).

The thermal and phase-transformation stresses are determined within the ¢
bic cell. The model material systems in Figure 1.1 are symmetric. Accoyding!
the thermal and phase-transformation stresses are sufficient to bmiheter
within one eighth of the cubic cell (see Figure 1.3), i.e.,§og (0,11/2) and
v € (0,1/2). The intervalg € (O,Ry), r € (Ry,Rp), andr € (R, rs) are related
to the spherical particle, the spherical envelope, and the cell matsgece
tively.

As presented in Figure 1.3, we get= OS, andrs = O for v € (0,v*)
andv € (v*,1/2), respectively. The point$; and S, represent intersections
of the axisxj with the cell surface8657and1456 respectively. The axig;
represents a radial direction (see Figure 1.2), which is defined by the angles
¢ € (0,11/2) andv € (0,1/2). The anglev* (see Figure 1.3) and the coefficient

cy are derived as
X 1
V= arctan(%) = arctan<a) )

w121 = [08] = [39] =

gl
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