
Introduction

This book1,2 presents original mathematical models of

• thermal and phase-transformation stresses, which originate during a cool-
ing process in model material systems, i.e., multi-particle-envelope-ma-
trix and multi-particle-matrix systems, corresponding to real three- and
two-component materials (see Chapters 2–4), respectively,

• intercrystalline and transcrystalline crack formation in components of
these model material systems, including mathematical definitions of cri-
tical limit states with respect to the material crack formation, which is
induced by these stresses (see Chapter 5).

• material micro- and macro-strengthening in components of these model
systems, which is induced by these stresses (see Chapter 6).

The material strengthening and the limit states represent important phenom-
ena in material science and engineering. The multi-particle-envelope-matrix
and multi-particle-matrix model systems consist of isotropic spherical particles
with and without an isotropic spherical envelope on the particle surface, which
are periodically distributed in an isotropic matrix (see Section 1.1). Thein-
terparticle distanced, the particle radiusR1, the envelope radiiR1, R2 and the
particle volume fractionvp represent parameters of these model systems, as
well as microstructural parameters of three- and two-component materials.

The multi-particle-envelope-matrix system corresponds to real three-com-
ponent materials (see Section 1.1), which consist of

1 This book was reviewed by the following reviewers:
Assoc. Prof. Ing. Robert Bidulský, PhD., visiting professor, Politecnico di Torino, Torino, Italy.

Prof. Ing. Daniel Kottfer, PhD., Alexander Dub³cek University of Tren³ćın, Faculty of Special Technology,
Department of Mechanical Engineering, Tren³ćın, Slovak Republic.

2 This book was supported by the Slovak scientific grant agency VEGA 2/0069/24.
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• isotropic precipitates with an isotropic continuous component on their
surfaces, distributed in isotropic crystalline grains, e.g., matrix-precipitate-
envelope composites,

• isotropic crystalline grains with and without an isotropic continuous com-
ponent (E) on their surfaces, and the crystalline grains exhibit identical or
different material properties, i.e., the real three-component materialcon-
sists of the crystalline grainsA+E, A or A+E, B, respectively, whereA,
B represent crystalline grains with different material properties.

The multi-particle-matrix system corresponds to real two-component mate-
rials, which consist of

• isotropic precipitates, distributed in isotropic crystalline grains, e.g., ma-
trix-precipitate composites,

• two types of isotropic crystalline grains with different material properties,
e.g., dual-phase steel with the grains A and B.

The relationships between the model material components and those of the
real three- and two-component materials are determined in Section 1.1.

The thermal stresses are a consequence of different thermal expansion coe-
fficients of the matrix, the envelope and the particle. The phase-transformation
stresses are a consequence of a different dimension of a cubic crystalline lattice
(see Section 1.3), which is transformed in the material component. Mathemati-
cal and computational models of phenomena in infinite periodic model material
systems are determined within identical suitable cells, and each cellcontains a
central component with or without the envelope. Due to this infinity and peri-
odicity, the mathematical and computational models, which are determined for
a certain cell, are valid for any cell. Infinite matrixes are useddue to simplicity
of mathematical solutions for material components (e.g., precipitates, pores).
The material components are small in comparison with macroscopic material
samples or macroscopic structural elements, and then the solutions are accept-
able in spite of this simplification [1]. The mathematical models results from
fundamental equations of mechanics of a solid continuum, with respect to its
shape, loading, mechanical constraints and the principle of minimum potential
energy.

Additionally, the stress fields, i.e., the thermal and phase-transformation
stresses, in neighbouring cells are mutually affected. The stress field in a certain
cell is then affected by those in neighbouring cells, and vice versa. In contrast
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to [2, 3], this effect is explicitly determnined by the superposition method of
mechanics of a solid continuum (see Section 1.8.3) [4, 5].

The infinite multi-particle-envelope-matrix and multi-particle-matrix sys-
tems are imaginarily divided into cubic cells with the dimensiond and with a
central spherical particle with or without the spherical envelope on the particle
surface, and the stresses are determined within the cubic cell (see Section 1.1).
Mathematical solutions for these model systems correspond to real composites,
in contrast to

• the simple one-particle mathematical model in [6], which is determined
for a simple one-particle-matrix model system,

• the simple multi-particle mathematical model in [7], which is determined
for physically unacceptable mechanical constraints due to unsuitable cells
of a multi-paticle-matrix system.

Different mathematical procedures, which are applied to the fundamental
equations (i.e., Cauchy’s and equilibrium equations, Hooke’s law), determined
with respect to a suitable ccordinate system (see Sections 1.2, 1.5), resultin
different mathematical solutions for the stresses in the matrix, the envelope and
the particle (see Sections 1.6, 2.1, 3.1, 4.1). Finally, such a combination of the
different mathematical solutions for these components is considered to exhibit
minimum potential energy (see Section 1.7). The mathematical models are
determined by standard procedures of mechanics of a solid continuum, which
include definitions of

• such model material systems, which corresponds to real three- and two-
component materials (Section 1.1),

• such a coordinate system, which corresponds to geometry of the model
systems (Section 1.2),

• reasons of the thermal and phase-transformation stresses (Section 1.3),

• the loading of the model material systems (Section 1.4)

• the fundamental equations, which sre determined with respect to the co-
ordinate system (Section 1.5), and result in a system of differential equa-
tions (Section 1.6),

• elastic energy density, elastic energy and total energy of the model mate-
rial systems (Section 1.7),
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• mechanical constraints, i.e., mathematical boundary conditions, for the
components of the model material systems (Sections 1.8.1, 1.8.2),

• the superposition method (see Section 1.8.3), which is considered within
the mathematical models of the thermal and phase-transformation str-
resses (see Section 1.8.3),

• different mathematical procedures (see Sections 2.1, 3.1, 4.1), which are
applied to the system of the differential equations (Section 1.7),

• final formulae for the thermal and phase-transformation stresses, strains,
elastic energy density and elastic energy (see Sections 2.2–2.5, 3.2, 3.3,
4.2, 4.3),

• mathematical procedures to determine

– such critical radii of the spherical envelope and the spherical par-
ticle, which are reasons of cracks in the components of the model
material systems,

– shapes and dimensions of the component cracks,

• formulae for the micro-strengthening in the material components, along
with formulae for the macro-strengthening in the cubic cell, i.e., in the
multi-particle-envelope-matrix and multi-particle-matrix systems.

The mathematical results in this monograph are then applicable within

• basic research (mechanics of a solid continuum, theoretical physics, ma-
terial science),

• the engineering practice, i.e., material technology,

• as well as within university undergraduate and postgraduate courses, as a
textbook on analytical material mechanics.

With regard to the basic research, the results of this monograph can be in-
corporated to mathematical models, which defines the disturbance of an ap-
plied stress field around inclusions in a solid continuum [8], as well as into
mathematical, computational and experi-mental models of overall materials
stresses, overall material strengthening, interactions of energy barriers with dis-
locations and domain walls, etc. The mathematical models include parameters
of the multi-particle-envelope-matrix and multi-particle-matrix system, i.e.,vp,
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d, R1, R2, which represent microstructural parameters of real three- and two-
component composites, respectively. In case of real three- and two-component
composites, (the engineering practice), material scientists and engineers can
determine such numerical values of the microstructural parameters,

• which result in maximum values of the material micro- and macro-streng-
thening,

• which define the limit states (i.e., critical states) with respect to the inter-
crystalline or transcrystalline crack formation in the components of the
real composites.

In case of homogeneous or heterogeneous microstructure of a real composite
material, the microstructural parameters are defined by mean or local numerical
values, respectively. Consequently, the material scientists and engineers can
develop suitable technological processes, which result in such microstructural
parameters to obtain maximum strengthening, and to avoid the crack formation.

This numerical determination, performed by suitable programming langua-
ges, result from the mathematical procedure in Appendix. With respect to the
university courses, the fundamental equations of mechanics of a solid contin-
uum, along with the mathematical procedures, are explained and determined in
detail. As a textbook on analytical material mechanics, this monograph is then
suitable for non-specialists in mechanics of a solid continuum. Finally, Ap-
pendix presents such mathematical topics, which are required to perform the
mathematical procedures in this monograph.

Ko³sice, Slovak Republic Ladislav Ceniga
March 2025 Institute of Materials Research

Slovak Academy of Sciences
Kosice, Slovak Republic
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Chapter 1

Solid Continuum Mechanics

1.1 Model Material System

Figures 1.1a and 1.1b show model material systems, which correspond to real
three- and two-component materials [9], i.e., the multi-particle-envelope-matrix
and multi-particle-matrix systems, respectively. The multi-particle-envelope-
matrix and multi-particle-matrix systems systems consist of isotropicspherical
particles with and without an isotropic spherical envelope on their surface,re-
spectively. The spherical particles with or without the spherical envelope are
periodically distributed in an isotropic infinite matrix with the interparticle dis-
tanced along the axesx1, x2, x3 of the Cartesian system(Ox1x2x3), where the
pointO is a centre of the spherical particle.

The model material systems are imaginarily divided into identical cubic
cells with the centreO and with the dimensiond. Each cell contains a central
spherical particle with or without the spherical envelope, whereR1 is a radius of
the particle, andR1, R2 are radii of the envelope. The cubic cell represents such
a part of the model material systems, which is related to one spherical particle.
The matrix is infinite along the axesx1, x2, x3. The model material systems
in Figure 1.1 are depicted in the planex1x2 of the Cartesian system(Ox1x2x3).
Due to infinity and periodicity of the model material systems, the same figure
is also considered for the planesx1x3 andx2x3.

As presented in [1], mathematical and computational models of phenomena
in infinite periodic model material systems are determined within identical suit-
able cells. Due to this infinity and periodicity, mathematical and computational
results, which are determined for a certain cell, are valid for any cell.

The mathematical models of the thermal and phase-transformation stresses
in the spherical particle, the spherical envelope, and the cell matrix forthe
infinite and periodic model material systems in Figure 1.1 are determined within
the cubic cell. Infinite matrixes are used due to simplicity of mathematical solu-
tions for material components (e.g., precipitates, pores, crystalline grains). The
material components are small in comparison with macroscopic material sam-
ples or macroscopic structural elements, and then the solutions are acceptable
in spite of this simplification [1].
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(a) (b)

Figure 1.1: (a) The multi-particle-envelope-matrix and (b) the multi-particle–
matrix systems are imaginarily divided into identical cubic cells with the di-
mensiond and with a central spherical particle. The spherical particles with
and without a spherical envelope on their surface are periodically distributed in
the infinite matrix, whereR1 is a radius of the particle, andR1, R2 are radii of
the envelope. The matrix is infinite along the axesx1, x2, x3 of the Cartesian
system(Ox1x2x3), whereO is identical with a centre of the spherical particles.
The thermal and phase-transformation stresses in the cellA and the neighbour-
ing cellsB are mutually affected.

Additionally, the stress fields, i.e., the thermal and phase-transformation
stresses, in neighbouring cells are mutually affected. The stress field in the
cell A is then affected by those in the neighbouring cellsB, and vice versa (see
Figure 1.1). In contrast to [2, 3], this effect is explicitly determnined by the
superposition method of mechanics of a solid continuum [4, 5].

With regard to the volumeVp = 4πR3
1/3 andVC = d3 of the spherical par-

ticle and the cubic cell, respectively, the particle volume fractionvp and the
interparticle distanced have the forms

vp =
Vp

VC
=

4π
3

(

R1

d

)3

∈ (0,vimax〉 , d = R1

(

2π
3vp

)1/3

, i = 1,2,

v1max=
π
6
, v2max=

π
6

(

R1

R2

)3

, (1.1)

wherev1max and v2max result from the conditiond = 2R1 and d = 2R2 for
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the multi-particle-matrix and multi-particle-envelope-matrix systems, respec-
tively. Additionally, vp, d, R1, R2 represent fundamental characteristics of real
two- and three-component material, which are determined by experimental and
computational techniques.

The multi-particle-envelope-matrix system in Figure 1.1a corresponds to
real three-component materials, which consist of

• isotropic precipitates with an isotropic continuous component on their
surfaces, distributed in isotropic crystalline grains, e.g., matrix-precipitate-
envelope composites,

• isotropic crystalline grains with and without an isotropic continuous com-
ponent (E) on their surfaces, and the crystalline grains exhibit identical or
different material properties, i.e., the real three-component materialcon-
sists of the crystalline grainsA+E, A or A+E, B, respectively, whereA,
B represent crystalline grains with different material properties.

The precipitates, the continuous component and the crystalline grains are
considered to represent the spherical particles, the spherical envelope andthe
matrix of the multi-particle-envelope-matrix system, respectively.

Similarly, the crystalline grains with the continuous component, the contin-
uous component and the crystalline grains without the continuous component
are considered to represent the spherical particles, the spherical envelope and
the matrix of the multi-particle-envelope-matrix system, respectively.

The multi-particle-matrix system in Figure 1.1b corresponds to real two-
component materials, which consist of

• isotropic precipitates, distributed in isotropic crystalline grains, e.g., ma-
trix-precipitate composites,

• two types of isotropic crystalline grains with different material properties,
e.g., dual-phase steel with the grains A and B.

Consequently, the precipitates and the crystalline grains are considered to
represent the spherical particles and the matrix of the multi-particle-matrix sys-
tem, respectively. Similarly, let the crystal grainsA andB be characterized by
the volume fractionvA andvB, respectively, wherevA + vB = 1. If vA < vB,
then the grainsA andB are considered to represent the spherical particles and
the matrix, respectively. IfvA > vB, then the grainsA andB are considered to
represent the matrix and the spherical particles, respectively. IfvA = vB, then
the following energy analysis is required to be considered. Let the grainsA
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and B be considered to represent the spherical particles and the matrix with
the elastic energyWpA andWmB, which is accumulated in one spherical par-
ticle and the cell matrix (see Equations (1.63), (1.64)), respectively. Let the
grainsA andB be considered to represent the matrix and the spherical particles
with the elastic energyWmA andWpB, which is accumulated in the cell ma-
trix and one spherical particle (see Equations (1.63), (1.64)), respectively. If
WpA+WmB < WmA+WpB, then the grainsA andB are considered to represent
the spherical particles and the matrix, respectively. IfWpA+WmB>WmA+WpB,
the grainsA andB are considered to represent the matrix and the spherical par-
ticles, respectively.

1.2 Coordinate System

The thermal and phase-transformation stresses are determined at the arbitrary
point P along the axesx′1, x′2, x′3 of the Cartesian system

(

Px′1x′2x′3
)

with the
unit vectors~e1

′, ~e2
′, ~e3

′ (see Figure 1.2), respectively. The pointP is defined
by the spherical coordinates(r,ϕ,ν), which are considered due to the spherical
particles and spherical envelopes (see Figure 1.1).

The thermal and phase-transformation stresses are determined within the cu-
bic cell. The model material systems in Figure 1.1 are symmetric. Accordingly,
the thermal and phase-transformation stresses are sufficient to be determined
within one eighth of the cubic cell (see Figure 1.3), i.e., forϕ ∈ 〈0,π/2〉 and
ν ∈ 〈0,π/2〉. The intervalsr ∈ 〈0,R1〉, r ∈ 〈R1,R2〉, andr ∈ 〈R2, rs〉 are related
to the spherical particle, the spherical envelope, and the cell matrix, respec-
tively.

As presented in Figure 1.3, we getrs = OS1 and rs = OS2 for ν ∈ 〈0,ν∗〉
andν ∈ 〈ν∗,π/2〉, respectively. The pointsS1 andS2 represent intersections
of the axisx′1 with the cell surfaces3657and1456, respectively. The axisx′1
represents a radial direction (see Figure 1.2), which is defined by the angles
ϕ ∈ 〈0,π/2〉 andν ∈ 〈0,π/2〉. The angleν∗ (see Figure 1.3) and the coefficient
cϕ are derived as

ν∗ = arctan

(

x12d
∣

∣O3
∣

∣

)

= arctan

(

1
cϕ

)

,

x12d =
∣

∣O8
∣

∣ =
∣

∣39
∣

∣ =
d

2cϕ
,

cϕ = cosϕ, ϕ ∈
〈

0,
π
4

〉

,

cϕ = sinϕ, ϕ ∈
〈π

4
,
π
2

〉

, (1.2)
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