
1. Introduction

Thermal input to optoelectronic devices is frequently identified as a factor that can impede
performance. It is well documented that thermal input can lead to significant alterations
and failures in electronic devices, as evidenced by numerous studies [1], [2]. Consequently,
significant research has been conducted to limit the heat input to a device, enhance the heat
transport from the device, or improve its resilience to temperature increases [3], [4], [5]. In the
scenario of laser-emitting devices in general, and laser diodes especially, the thermal impact
on numerous device designs has been studied extensively [6], [7], [8]. Despite its reputation,
this work investigates ways to turn the drawbacks of thermal input into a semiconductor
device in the opposite direction and to find concepts that allow further functionalities in the
context of active optical elements. Instead of avoiding thermal input, precisely tuned heat
load portions are used to alter the optical landscape within a light emitter.
The path light takes within any medium is primarily affected by the refractive index, n,

of the medium it traverses. Following the principle of Fermat, the light may be diffracted,
reflected, or travel along bent paths. Depending on the initial conditions, such as the shape
of the light, one may use a refractive index distribution that tailors the light to specific
needs. A variety of concepts exist that may be used to generate an arbitrary refractive
index distribution. Approaches like proton bombardment, laser-pulse writing, or localized
material diffusion are commonly applied [9], [10], [11]. The alterations introduced in this
manner are time-invariant, forming a constant refractive index profile that light encounters
as it passes through a potential optical device. While this behavior is expected and desired
for many applications, the demand for variable optical elements is increasing. A prominent
example of this development is found in photonic integrated circuits, with an ever-increasing
functional density [12], where various kinds of switchable optical elements are introduced
[13], [14]. However, typical variable optical elements support the transition between or the
transport within predefined optical waveguides; they do not directly guide or steer the light
by their input. In this work, switchable elements are presented that can address demanding
challenges, such as waveguiding when switched on and then vanishing from the refractive
index landscape when not needed.
Founded on GaAs-based edge-emitting devices, micro-heating elements that allow local-

ized heat deposition are introduced. Through the well-explored thermo-optical effect, a
temperature increase leads to a manipulation of the refractive index [15], affecting light
propagation. In the two main parts of this thesis, the capabilities of thermo-optic elements
are investigated within optical passive and active devices. The passive devices show neither
optical gain nor significant losses and are used to derive fundamental properties of light
propagation influenced by thermal impact. The second part introduces heating elements to
active devices. Here, a typical high-power semiconductor vertical structure is applied that
can be driven by an electrical current to allow optical gain within the device. In both parts,
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experimental and simulation analyses are provided. The simulation is based on a tailored
multi-physics model that allows the investigation of microscopic optical behavior within the
devices.
This thesis is organized as follows: The Chapters 2 and 3 provide the theoretical baseline

and the concept of the utilized simulation algorithm. The measurement setup is introduced
in Chapter 4. In Chapter 5, devices with passive vertical structures are investigated, fo-
cusing on fundamental thermal waveguiding phenomena. In Chapter 6, micro heaters are
introduced to an active vertical structure. Here, the spatial modulation of light within the
device is presented. The effects of beam steering and astigmatism variation are explained in
detail. This work concludes with an outlook section, exploring possible applications based
on microheater elements. Additional relations and measurements are found in the appendix.
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This work investigates the fundamental and applied aspects of thermo-optical light modula-
tion within semiconductor-based devices. To analyze the phenomena involved, the necessary
fundamentals for describing these processes are introduced. Initially, the concept of wave
optics is presented as a universal tool for describing micro-optical behavior. Based on the
principles of wave optics, the concept of light guiding within optical modes is presented. This
is followed by a brief summary of the aspects of semiconductor-based light emission and am-
plification. Finally, the mechano-optical and thermo-optical effects are introduced. Both
effects are the main factors influencing the optical propagation in the devices investigated
here.

2.1. Wave optics and optical waveguiding

This chapter establishes the fundamental relationships that enable the description of light
within optical waveguides. The characterization of optical waveguides can be approached
through various methodologies. A standard method is the geometrical approach, which
models light distribution as rays that travel independently within an optical system. This
approach is particularly effective in describing scenarios such as multimode fiber coupling
and guiding. Although the foundational principles of this concept are well-established and
thoroughly explored [16], it continues to be an area of active research [17]. The geometrical
approach proves to be accurate in many scenarios, even though it disregards the wave-
like nature of light. However, a different approach is required for specific applications,
particularly when light is confined to narrow spatial geometries. The following sections
derive the fundamentals of wave optics, providing a framework for describing edge-emitting
devices with longitudinally varying layouts. The classical description of an electromagnetic
field follows the Maxwell’s equations. Restricted to non-magnetizable materials and without
electrical source or drain they can be written as

∇× E = −µ0∂tH, (2.1)

∇×H = j+ ∂tD, (2.2)

∇ ·D = 0, (2.3)

∇ ·H = 0, (2.4)

with the time and space dependent parameters electrical field E, magnetic field H, electrical
current density j and electrical displacement field D and the vacuum permeability µ0. The
material response to an electrical field is given by

D = ϵ0E+P, (2.5)
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with the polarization density P and vacuum permittivity ϵ0. The given equations are suf-
ficient to describe arbitrary electromagnetic field distributions. However, for practical sce-
narios, a form, directly exhibiting the wave nature of electromagnetic radiation is preferred.
To extract the wave equation concerning the electrical field one applies the curl operator to
equations 2.1 and 2.2, eliminating the H dependency. With equation 2.3, equation 2.5 and
the vector identity ∇×∇E = ∇ (∇ · E)−∇2E one yields

1

ϵ0
∇ (∇×P) +∇2E = µ0∂tj+

1

c20
∂2
tE+ µ0∂

2
tP, (2.6)

with the speed of light c0. The material response to an electrical field, expressed by P, is
described by the convolution

P(t) = ϵ0

∫

∞

0

χ(τ)E(t− τ) dt (2.7)

with the electrical susceptibility χ. Using the convolution theorem, the time-dependent
polarization in 2.7 can be transferred in the frequency domain leading to P(ω) = ϵ0χ(ω)Eω.
The respective wave equation in the frequency domain is obtained by applying the Fourier
differentiation rule to equation 2.7 leading to

1

ϵ0
∇
(

∇ · P̃
)

+∇2Ẽ = iωµ0j− k2
0Ẽ− ω2µ0P̃, (2.8)

with the wavenumber k0 =
2π
λ0

and the angular frequency ω. Variables with tilde superscript
represent the frequency domain variable. With equation 2.5 in frequency domain and the
assumption

√
ϵ = n, equation 2.8 can be given as

∇
(∇n2

n2
Ẽ

)

+∇2Ẽ = −k2
0n

2Ẽ. (2.9)

When assuming a slow variation of n, the left-hand side term can be neglected, finally leading
to

∇2E = −k2
0n

2E, (2.10)

known as the Helmholtz equation for inhomogeneous media. The different components of
Ẽ are not coupled anymore. Thus, the components can be expressed individually via the
scalar potential E. Equation 2.10 can be further simplified in the context of semiconductor
edge-emitting devices, that will be treated exclusively within this work.

2.1.1. Optical waveguide modes

The Helmholtz equation 2.10 sets the baseline for light propagation within the hereafter
discussed optical systems. It governs the behavior of light in arbitrary spatial refractive
index distributions. Within this work, directed light propagation along a given axis is the
focus of research. In the scenario of a longitudinal slowly varying refractive index landscape,
the propagation is conveniently described by modes. Modes are generally solutions to the
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Maxwell equations and solutions to the Helmholtz equation under the given simplifications.
Especially for spatial-invariant systems, modes are a fundamental concept in the description
of light propagation [18], [19].
Layouts that allow the transversal confinement and hence the longitudinal transport of light
over long distances are referred to as waveguides [20]. In the ideal scenario, a waveguide
exhibits a longitudinal invariant behavior. Also assuming a longitudinal invariant refractive
index with n(x, y, z) → n(x, y) the electrical field can be written as

E(x, y, z) = E(m)(x, y)eiβz−iωt, (2.11)

where m is introduced as the mode order. The electrical field may oscillate in different
spatial orientations. However, in many scenarios, such as slab waveguides the problem
can be observed one-dimensionally allowing simplifications [21], [22]. Additionally, for laser
applications, one often treats with linear polarized light [23]. The electrical field vector
can then be treated as a scalar parameter. Linear polarized light is then conventionally
described as TE- or TM-polarized with E = Ex or E = Ey respectively, which proves to be
an accurate approximation for planar-like waveguides [24]. When inserting equation 2.11 in
2.10 and assuming TE polarization, one yields

1

k0

∂2E0(x)

∂x2
+ n(x)2E0(x) = n2

effE0(x), (2.12)

with β = neff · k0 where neff denotes the modal effective index. With n being only dependent
on x a one-dimensional approach is implicated. The equation, representing an eigenvalue
problem, is efficiently solved by a finite difference approach as follows.
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(2.13)

The parameter h depends on the simulation setup and may be chosen to be proportional
to the numerical grid spacing. The solution of the eigenvalue equation returns the modal
electric field distribution Em(x) and the modal refractive indices nm. The derived field
distributions describe Eigenmodes that are supported by the given refractive index profile.
The longitudinal (z) behavior of the individual modes is given by their propagation constants
βm = nm · k0. In the scenario of passive waveguides, nm is typically positive and real-valued
for relevant modes. However, scenarios for so-called radiative or leaky modes can appear,
that result in complex eigenvalues [25]. In the scenario of an open waveguiding problem,
with infinite transversal dimension, any arbitrary field can be represented by a superposition
of individual modes [26]. Subsequently, in the closed system, as implicated by the presented
finite difference approach, an arbitrary electrical field may not be fully described by modes
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of the waveguide. However, the fraction of light traveling, or guided, within certain modes
can be calculated with the well-known overlap integral. The 1-D overlap integral between
an arbitrary field distribution and a given mode reads

ηm =
|
∫

E(x) · E∗

m(x)dx|2
∫

|E(x)|2dx ·
∫

|Em(x)2|dx
, (2.14)

with the modal power fraction ηm.

2.2. Semiconductor light emission and amplification

The concept of semiconductor light emission is typically based on an epitaxially grown layer
stack that includes heterojunctions [27]. The junction area serves as the active region of
the device. When a driving current is applied in the diode’s forward direction, it generates
excited charge carriers, which may form a population inversion within the active region.
While spontaneous emission occurs before the onset of inversion, light amplification only
happens in the inverted state of operation, where stimulated emission becomes dominant.
This amplification is described as optical gain. To enhance electro-optical efficiency, specific
layer combinations are employed to spatially confine charge carriers, typically in the form of
quantum wells [28]. These structures enable precise tuning of the emission wavelength and
efficient confinement, even at elevated operating temperatures [29]. Devices based on quan-
tum wells can be fabricated to emit either vertically or horizontally. This work focuses on
devices that emit in the epitaxial plane, known as edge emitters. Besides providing optical
gain, the vertical layer stack can act as an optical slab waveguide, confining the optical field
in the vertical dimension. Edge emitters can be used either as laser sources themselves or
as semiconductor optical amplifiers (SOAs) that amplify laser radiation. In the SOA config-
uration, seed laser light is coupled into the amplifier, and the optical power is continuously
amplified as it propagates through the SOA [30]. In this work, the SOAs used are based
on a III-V GaAs compound semiconductor material. The emission and amplification wave-
lengths can be adjusted by the material composition used as active region [31], [32]. This
approach enables the realization of structures emitting in the range of 620 nm to 1120 nm
[33], [34]. Apart from the vertical structure, the emitter characteristics are also significantly
influenced by the horizontal device layout. Depending on the intended application, emitters
with transverse single mode (ridge waveguide - RW), transverse multi-mode (broad area -
BA), or high-power single-mode-like (tapered - TP) functionality can be fabricated. These
different layouts are typically achieved using sections featuring either index or gain guiding
[35]. Index guiding is generally introduced by altering the refractive index in specific regions
of the device during manufacturing, leading to configurations like ridge waveguides. Gain
guiding, on the other hand, results from local electrical pumping, which causes localized
charge carrier excitation and consequently increased local heating. For certain function-
alities, such as reducing the optical intensity at the device facets, combinations of index-
and gain-guided layouts are often employed. This is particularly common in tapered ampli-
fiers and tapered lasers, where an initial ridge waveguide section is typically followed by a
gain-guided area. A typical SOA device is sketched in figure 2.1.
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Figure 2.1.: Sketch of a tyical ridge wavguide SOA. Wavguiding in the vertical direction is
introduced by the expitaxial layer stack. The horizontal waveguiding is achieved
by a ridge structure. Optical amplification is achieved by the electrical pumping
of the active region via the injection current.

2.3. Refractive index variation

The refractive index n is a fundamental parameter for describing the behavior of electromag-
netic radiation within a medium. Generally, the refractive index is a complex quantity that
accounts for both the propagation velocity of the electromagnetic wave and the medium’s
absorption or amplification properties. In non-magnetic materials, the refractive index is
directly derived from the electromagnetic permittivity as

n =
√
ϵ1 + iϵ2, (2.15)

where ϵ1 denotes the real part of the permittivity and ϵ2 the imaginary part, representing
the material’s absorption or gain. For optically isotropic materials, the refractive index can
be treated as a scalar. However, in certain cases, such as with birefringent or mechanically
strained materials, the refractive index must be described using the optical indicatrix

n → n =





n1,1 0 0
0 n2,2 0
0 0 n3,3



 . (2.16)

The matrix can be visualized in the shape of an index ellipsoid. In the following sections,
two effects that influence the refractive index n in semiconductor devices will be discussed.

2.3.1. Photoelastic effect

The introduction of mechanical stress to an optical medium is well-known for altering the
refractive index. As stress is typically applied non-isotropically, a former isotropic material
may exhibit a birefringent behavior [36]. The intrinsic reaction of any material to external
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stress σ is its deformation, expressed as the material strain s. Stress and strain are connected
via Young’s modulus C with

C =
σ

s
. (2.17)

The change in refractive index due to material deformation is called the photoelastic effect.
The derivations presented hereafter follow the arguments of [37]. To calculate the impact of
stress on the permittivity and refractive index, commonly a modified material equation is
introduced. Instead of the permittivity, the impermeability tensor Bij is introduced resulting
in

E = BijD. (2.18)

In general, the impermeability is a tensor of second-rank. The impermeability can be linked
to the material strain by the elasto-optical coefficients pijrs, which are represented by a tensor
of fourth-rank. For sufficiently small material strain the relation reads

∆Bij = pijrssrs. (2.19)

The initial 81 entries of pijrs can be greatly simplified in general and especially for crystals
with certain symmetries. Due to symmetry considerations, pijrs reduces to pij. Also, the
impermeability tensor can be simplified from Bij to Bi. For cubic crystals, with an initially
isotropic behavior, pij can be simplified even further with only four independent parameters.
Thus, the change in impermeability can be expressed as
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(2.20)

where the strain s is noted in the Voight notation. With the individual entries, the change in
refractive index can be calculated corresponding to different spatial directions. The change
in permittivity can now be approximated with

∆ϵij ≈ −ϵ2∆Bij (2.21)

or when expressed via the refractive index

∆nij ≈
−n3

2
∆Bij. (2.22)

As discussed before, this strong simplification is only valid if the impermeability tensor is
isotropic before straining. Finally, the relevant entry for linearly polarized light can be
selected following [38]. For TE-polarized light, where E oscillates along the x-axis the
relevant refractive index is n11.
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2.3.2. Thermo-optical effect

The impact of temperature on optical media is a phenomenon that is evident in daily obser-
vations and an effect known for a significant period in time. While its occurrence is generally
known, its description is more complex. In most scenarios, a phenomenological approach is
chosen to describes the optical properties under the variation of temperature. However, it is
worthwhile taking a closer look at the underlying microscopic mechanisms that, in summa-
tion, affect the optical characteristics. The response of matter to electromagnetic radiation
is often modeled via oscillators of different types. As with every oscillator, its behavior
depends strongly on internal damping effects, the coupling from the external driving force
to the oscillator, its eigenfrequency and also the external force frequency and magnitude.
These effects are accumulated within the dielectric function, which describes the behavior of
electrons under the influence of an external time-dependent electric field. Derived from the
oscillation equation of a driven harmonic oscillator the dielectric function is given by

ϵ(ω) = 1 + Ep

∑

k

fcv(k)

E2
cv(k)− E2

(2.23)

where the electronic plasma energy is given by

Ep =
√

4πNh̄e2/m. (2.24)

The parameters fcv and Ecv denote the so-called oscillator strength and transition energy.
The number of oscillators per volume is given by N and the photon energy is E. To model the
dielectric properties of a typical semiconductor in a wider spectral range, a higher number
of individual oscillators must be used [39]. However, for this reason, a single oscillator
approximation can be used when describing a narrow spectral region e.g. one possible
transition. With this approach, equation 2.23 simplifies to

ϵ = n2 = 1 +
E2

p

E2
g − E2

(2.25)

where Eg is the gap energy, corresponding to the chosen transition. It is immediately appar-
ent that the refractive index now depends on the plasma energy and the gap energy. Both
show a temperature dependency that is discussed in the following.
The plasma energy varies with the number of particles per volume, resulting in

dE2
p

dT
=

4πh̄2e2

m

dN

dT
= −3kexE

2
p , (2.26)

with the material thermal expansion coefficient kex. Following the thermo-optic coefficient
can be defined as

dn

dT
= nT =

n2 − 1

2n

[

−3kex − 2
2

Eg

dEg

dT

1

1− (E/Eg)2

]

. (2.27)

With the explicit impact of the change in Ep the impact on the gap energy Eg remains to be
expressed explicitly. The variation of the gap energy with temperature is a well-known effect,
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that appears in numerous semiconductor devices [40]. Two main factors of influence can be
found that contribute to the gap energy shift. Firstly, the material expansion correlates
with the lattice constant of the semiconductor. As the lattice is expanded the overlapping of
electronic wave functions is altered, leading to a change in the energetic position and shape
of valence and conduction bands, thus altering the gap energy [41]. However, this effect is
not sufficient to describe the magnitude of change. The second contribution is introduced
by phonon-electron interaction. It is shown, that a non-zero mean-square displacement of
individual atoms alters the band structure. The magnitude of change is then proportional
to the Debye-Waller factor [42].
While the theoretical basics of phonon interaction help to understand the thermo-optical
effect, it proves difficult to apply the model for practical applications [40]. Therefore, the

variation of
(

∂Eg

∂T

)

V
can be approximated by a phenomenological approach. The concept

introduced by Varshni [43] gives a robust and often utilized tool. The temperature-dependent
gap energy is expressed by

Eg(T ) = E0 −
αT 2

T + β
, (2.28)

with the gap energy E0 = Eg(0K) and the constants α and β.
With equation 2.27 and 2.28 experimentally derived data can be fitted to find the unknown
parameters α and β [15].
As this work focuses on GaAs-based devices, it is worth taking a closer look at equation 2.27
in the context of direction-dependent behavior. The variables E and Ep do not have spatial
dependencies. In contrast, the thermal expansion expressed by kex is a material-specific pa-
rameter that is in general anisotropic due to the anisotropy nature of many crystal structures
[44]. However, in the specific case of cubic crystal systems, an isotropic behavior governs
the expansion behavior. Hence, for GaAs kex,[100] = kex,[010] = kex,[001] holds. Therefore,
the thermally introduced refractive index variation can be treated as a scalar change to the
undisturbed system.

2.4. Characteristic beam parameters

An optical beam can be described by its electric field distribution, E. From this electric
field, various parameters related to the originating beam can be derived, which is particu-
larly useful in optical simulations. In such simulations, the electric field can be calculated
at arbitrary positions within or outside an optical device. Additionally, knowing the initial
electric field distribution allows one to compute the evolution of the field as it propagates
through different optical elements. In this section, the calculation of parameteres that are
relevant to this work are presented. For the specific case of edge-emitting devices, certain
simplifications can be made before performing these calculations. Edge-emitting devices
have a characteristic shape of light propagation, both within and exiting the devices. As
described in section 2.2, light within an edge emitter is always guided in the vertical direc-
tion. Typically, the vertical waveguide supports only a single vertical mode. Because the
vertical structure remains largely unchanged throughout the device, spatial variations in the
vertical electric field can be neglected. Thus, the transverse electric field distribution at a
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