Table of contents

Acknowledgments I Abstract II		
	1.1 Background and motivation · · · · 1	
	1.2 State of the art ······ 4	
	1.2.1 Carbon geological utilization and storage technologies · · · · · · 4	
	1.2.2 Underground hydrogen storage technologies · · · · 12	
	1.2.3 Microbial metabolisms related to UBM · · · · 14	
	1.2.4 Studies related to UBM······ 16	
	1.3 Research gaps and objectives	
	1.4 Thesis outline 35	
2	Site selection for underground bio-methanation	
	2.1 Evaluation criteria system · · · · 38	
	2.1.1 Technology (C1)	
	2.1.2 Safety (C2)	
	2.1.3 Society (C3)	
	2.1.4 Economy (C4)	
	2.2 Integrated multi-criteria decision-making approach	
	2.2.1 Information processing 44	
	2.2.2 Criterion weight calculation	
	2.2.3 Alternative ranking · · · · 47	
	2.3 Case study	

	2.3.1 Background and overview ·····	49
	2.3.2 Optimal site selection · · · · · · · · · · · · · · · · · · ·	50
	2.4 Discussion · · · · · · · · · · · · · · · · · · ·	54
	2.4.1 Sensitivity analysis · · · · · · · · · · · · · · · · · ·	54
	2.4.2 Comparative analysis ····	57
	2.5 Summary····	58
3 1	Biogeochemical modelling approach	59
	3.1 Overview····	59
	3.2 Biochemical kinetic models ·····	59
	3.3 Geochemical equilibrium models ·····	61
	3.3.1 Gas dissolution ·····	61
	3.3.2 Aqueous reactions ·····	62
	3.3.3 Mineral dissolution and precipitation ·····	64
	3.4 Model validation	64
	3.5 Summary····	65
4 1	mpacts of microbial competition on underground bio-methanation	67
	4.1 Parameter description ····	67
	4.2 Analysis of microbial metabolism·····	69
	4.2.1 Methanogenesis	70
	4.2.2 Acetogenesis · · · · · · · · · · · · · · · · · ·	72
	4.2.3 Sulfate reduction ····	74
	4.2.4 Three microbial metabolisms · · · · · · · · · · · · · · · · · ·	76
	4.3 Sensitivity analysis ····	80

4.3.1 Reservoir condition 80
4.3.2 Substrate availability 85
4.3.3 Microbial kinetic parameters ····· 90
4.4 Summary 94
5 Impacts of cyclic underground bio-methanation on the gas-water-rock system 97
5.1 Methodology · · · · 97
5.1.1 Simulation approach 97
5.1.2 Validation of coupled approach · · · · 99
5.2 Results and discussion
5.2.1 Impact on rock porosity and gas conversion · · · · · 100
5.2.2 Impact on water salinity and gas conversion · · · · · 103
5.2.3 Impact on storage capacity and gas conversion · · · · · 106
5.2.4 Impact on reservoir temperature and gas conversion
5.3 Summary
6 Conclusions and outlook 114
References