
Introduction

This book1,2 presents original mathematical models of thermal and phase-trans-
formation stresses in three-component materials, which consist of an isotropic
matrix with isotropic cylindrical particles (whiskers) and an isotropiccylindri-
cal envelope on the particle surface. The thermal stresses originate during a
cooling process at the temperatureT < Tr , and are a consequence of different
thermal expansion coefficient of the particle and the matrix, whereTr is relax-
ation temperature of the three-component material. The phase-transformation
stresses originate at the phase-transformation temperatureTtq < Tr , and are a
consequence of different dimensions of crystalline lattices, which are mutually
transformed during the phase-transformation process in the cylindrical particle
(q = p), the matrix (q = m), the cylindrical envelope (q = e).

The mathematical models are determined for a suitable model material sys-
tem. The model system, which is required to correspond to real three-component
materials with cylindrical particles, is characterized by the particle volume frac-
tion vp, the inter-particle distanced, the particle lengthL1, the particle radius
R1, the envelope lengthL2, the envelope radiiR1, R2, whereR1 < R2.

The mathematical models include these characteristics of the model material
system, which represent structural parameters of real three-component materi-
als with cylindrical particles. Accordingly, the mathematical models are appli-
cable to three-component materials of the particle-matrix type (e.g., martensitic
steel: martensitic cylindrical particles with a cylindrical envelopeon the parti-
cle surface and an austenitic matrix), as well as to those with two typesof
crystalline grains with different material properties (e.g., dual-phase steel: the
cylindrical grainsA with a cylindrical envelope on the surface of the grainA,
and the grainsB).

The thermal and phase-transformation stresses are derived within a suit-
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able coordinate system. The coordinate system is required to correspond to
the shape of the cylindrical particles and the cylindrical envelope.

The mathematical models results from mechanics of an elastic continuum,
and result in different mathematical solutions for the thermal and phase-transfor-
mation stresses. The mathematical solutions are required to consider con-
straints of the elastic continuum, which are defined by mathematical bound-
ary conditions. Due to these different mathematical solutions, the principle of
minimum elastic energy is considered.

As usual in mechanics of a solid continuum, stresses in a solid continuum
are investigated within an infinitesimal part of the solid continuum at anarbi-
trary point. The position of this infinitesimal part is determined by a suitable
system of coordinates. i.e., by the cylindrical coordinates. The shape of the
infinitesimal part results from that of the solid continuum, i.e., a cylindrical
infinitesimal part is considered.

The influence of the solid continuum on the cylindrical infinitesimal part is
represented by displacements and strains of the cylindrical infinitesimal part,
as well as by stresses, which act on surfaces of the cylindrical infinitesimal
part [1]. The relationships between the displacement and strains are defined by
Cauchy’s equations. The relationships between the stresses are defined by the
equilibrium equations. The relationships between the strains and stresses are
defined by Hooke’s law. Cauchy’s equations, the equilibrium equations, along
with Hooke’s law, represent fundamental equations of mechanics of an elastic
solid continuum.

If a system of the fundamental equations exhibits different mathematical
solutions, then the principle of minimum total potential energy [1] is required
to be considered. Strictly speaking, such a mathematical solution is considered,
which exhibits minimum total potential energy of the material model system.
Finally, such a stress-strain state of the model material system is realized to
correspond to this solution.

The mathematical procedures in this book, along with such a mathematical
procedure, which is required within the determination of numerical values of
the thermal and phase-transformation stresses, are analysed in Appendix (see
Section A). The numerical determination is performed by a programming lan-
guage.

Accordingly, the determination of the mathematical models of the thermal
and phase-transformation stresses includes:

• the definition of such a three-component model material system, which
corresponds to real three-component materials, and is characterized by
the particle volume fractionvp, the inter-particle distanced, the particle
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lengthL1, the particle radiusR1, the envelope lengthL2, the envelope
radii R1, R2, whereR1 < R2 (see Section 1.1),

• the definitions of such a coordinate system and an infinitesimal cylindri-
cal part of the model material system, which correspond to the shape of
the cylindrical particle (see Section 1.2),

• the definition of intervals of coordinates (see Section 1.2),

• the analysis of a reason of the thermal and phase-transformation stresses
(see Section 1.3),

• the analysis of displacements of the infinitesimal part (see Section 2.1,

• the definition of the fundamental equations for the infinitesimal part (see
Sections 2.1–2.3),

• the determination of a system of differential equations, which results
from the fundamental equations, and is solved by the method of sepa-
ration of variables (see Section 2.4),

• the analysis of energy of the model material system with respect to the
principle of minimum total potential energy (see Section 2.5) [1].

• the determination of the mathematical boundary conditions, which define
the constraints of the model material system (see Section 2.6),

• the determination of the elastic energy of the model material system (see
Section 2.7),

• the determination of two mathematical models in Chapters 3, 4 with final
formulae for the thermal and phase-transformation stresses in the cylin-
drical particle and the matrix,

• the analysis of the mathematical procedures, which are considered within
the determination of the mathematical models of the thermal and phase-
transformation stresses in the three-component materials with the cylin-
drical particles (whiskers) (see Section A).
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Chapter 1

Matrix-Whisker Composite

1.1 Model Material System

Figure 1.1 shows a model material system, i.e., the multi-particle-envelope-
matrix system, which corresponds to real three-component materials [2].

Figure 1.1: The multi-particle-envelope-matrix system is imaginarily divided
into identical cubic cells with the dimensiond and with a central cylindrical
particle. The cylindrical particles with a cylindrical envelope on the particle
surface are periodically distributed in the infinite matrix, whereL1, L2 andR1,
R2 are length and radii of the particle, envelope, respectively. The matrix is
infinite along the axesx1, x2, x3 of the Cartesian system(Ox1x2x3), whereO
is identical with a centre of the cylindrical particles. The surfacesS11, S12 and
S31, S32 of the particle-envelope, matrix-envelope boundaries with the normal
x1 andx3, respectively, and with the surface areaS11 = 2πR1L1, S12 = 2πR2L2

S31 = πR2
1, S32 = πR2

2, respectively.

The multi-particle-envelope-matrix system consists of isotropic cylindrical
particles with an isotropic cylindrical envelope on the particle surface,which
are periodically distributed in an isotropic infinite matrix with the inter-particle
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