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This book-2 presents original mathematical models of thermal and phase-trans-
formation stresses in three-component materials, which consist of aopsot
matrix with isotropic cylindrical particles (whiskers) and an isotrogyitindri-

cal envelope on the particle surface. The thermal stresses originate during a
cooling process at the temperatdre< T,, and are a consequence of different
thermal expansion coefficient of the particle and the matrix, whgere relax-

ation temperature of the three-component material. The phase-transformation
stresses originate at the phase-transformation temperagteT;, and are a
consequence of different dimensions of crystalline lattices, which are mutuall
transformed during the phase-transformation process in the cylindricallpartic
(q=p), the matrix ¢ =m), the cylindrical envelopey=e).

The mathematical models are determined for a suitable model material sys-
tem. The model system, which is required to correspond to real three-component
materials with cylindrical particles, is characterized by the plrtrolume frac-
tion vp, the inter-particle distance, the particle length.,, the particle radius
Ry, the envelope lengthy, the envelope radiRRy, Ry, whereR; < Ro.

The mathematical models include these characteristics of the model hateria
system, which represent structural parameters of real three-componeinit mat
als with cylindrical particles. Accordingly, the mathematical modedsagpli-
cable to three-component materials of the particle-matrix type (e.gtensdtic
steel: martensitic cylindrical particles with a cylindrical envel@pethe parti-
cle surface and an austenitic matrix), as well as to those with two types
crystalline grains with different material properties (e.g., dual-phtesd: she
cylindrical grainsA with a cylindrical envelope on the surface of the grain
and the grain8).

The thermal and phase-transformation stresses are derived within a suit-
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able coordinate system. The coordinate system is required to correspond to
the shape of the cylindrical particles and the cylindrical envelope.

The mathematical models results from mechanics of an elastic continuum,
and result in different mathematical solutions for the thermal and phassfdra
mation stresses. The mathematical solutions are required to consider con-
straints of the elastic continuum, which are defined by mathematical bound-
ary conditions. Due to these different mathematical solutions, the principle of
minimum elastic energy is considered.

As usual in mechanics of a solid continuum, stresses in a solid continuum
are investigated within an infinitesimal part of the solid continuum adrdon
trary point. The position of this infinitesimal part is determined by a suitable
system of coordinates. i.e., by the cylindrical coordinates. The shape of the
infinitesimal part results from that of the solid continuum, i.e., a cylindrica
infinitesimal part is considered.

The influence of the solid continuum on the cylindrical infinitesimal part is
represented by displacements and strains of the cylindrical infinitesimial pa
as well as by stresses, which act on surfaces of the cylindrical infimiss
part [1]. The relationships between the displacement and strains are defined by
Cauchy’s equations. The relationships between the stresses are defined by the
equilibrium equations. The relationships between the strains and stresses are
defined by Hooke’s law. Cauchy’s equations, the equilibrium equations, along
with Hooke’s law, represent fundamental equations of mechanics of an elastic
solid continuum.

If a system of the fundamental equations exhibits different mathematical
solutions, then the principle of minimum total potential energy [1] is required
to be considered. Strictly speaking, such a mathematical solution is corsidere
which exhibits minimum total potential energy of the material model system.
Finally, such a stress-strain state of the model material systepaiged to
correspond to this solution.

The mathematical procedures in this book, along with such a mathematical
procedure, which is required within the determination of nhumerical values of
the thermal and phase-transformation stresses, are analysed in Apperdix (s
Section A). The numerical determination is performed by a programming lan-
guage.

Accordingly, the determination of the mathematical models of the thermal
and phase-transformation stresses includes:

e the definition of such a three-component model material system, which
corresponds to real three-component materials, and is characterized by
the particle volume fractiomp, the inter-particle distanca, the particle
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length L, the particle radiusk;, the envelope length,, the envelope
radii Ry, Rp, whereR; < Ry (see Section 1.1),

the definitions of such a coordinate system and an infinitesimal cylindri-
cal part of the model material system, which correspond to the shape of
the cylindrical particle (see Section 1.2),

the definition of intervals of coordinates (see Section 1.2),

the analysis of a reason of the thermal and phase-transformation stresses
(see Section 1.3),

the analysis of displacements of the infinitesimal part (see Section 2.1,

the definition of the fundamental equations for the infinitesimal part (see
Sections 2.1-2.3),

the determination of a system of differential equations, which results
from the fundamental equations, and is solved by the method of sepa-
ration of variables (see Section 2.4),

the analysis of energy of the model material system with respect to the
principle of minimum total potential energy (see Section 2.5) [1].

the determination of the mathematical boundary conditions, which define
the constraints of the model material system (see Section 2.6),

the determination of the elastic energy of the model material system (see
Section 2.7),

the determination of two mathematical models in Chapters 3, 4 with final
formulae for the thermal and phase-transformation stresses in the cylin-
drical particle and the matrix,

the analysis of the mathematical procedures, which are considered within
the determination of the mathematical models of the thermal and phase-
transformation stresses in the three-component materials with the cylin-
drical particles (whiskers) (see Section A).
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Chapter 1

Matrix-Whisker Composite

1.1 Mode Material System

Figure 1.1 shows a model material system, i.e., the multi-particlelepe-
matrix system, which corresponds to real three-component materials [2].
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Figure 1.1: The multi-particle-envelope-matrix system is imaginarilyodigi
into identical cubic cells with the dimensiahand with a central cylindrical
particle. The cylindrical particles with a cylindrical envelope on the plarti
surface are periodically distributed in the infinite matrix, whegelL, andRy,

R, are length and radii of the particle, envelope, respectively. The matrix i
infinite along the axesi, xo, X3 of the Cartesian systeff©x;xox3), whereO

Is identical with a centre of the cylindrical particles. The surfé€sgsS;» and

S31, Sz of the particle-envelope, matrix-envelope boundaries with the normal
X1 andxs, respectively, and with the surface a®@a—= 21IR; L1, S;o=2TR, L,

S31 = TR?, Sz = TIRS, respectively.

The multi-particle-envelope-matrix system consists of isotropic cyliadric
particles with an isotropic cylindrical envelope on the particle surfadech
are periodically distributed in an isotropic infinite matrix with thearparticle
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