Motivation der Arbeit

Die Elektromobilität im Sektor der Personenkraftwagen wuchs zwischen 2012 und 2021 nahezu um den Faktor 85 von 205 tsd. auf knapp 17,5 mio. vollelektrische Fahrzeuge (engl. Battery Electric Vehicle ff. BEVs), Hybride (engl. Hybrid Electric Vehicle ff. HEVs) und Plug-in Hybride (engl. Plug-In Hybrid Electric Vehicle ff. P-HEVs). Laut einer international durchgeführten Studie von Proff, Bowman et al. wird der Fahrzeugmarkt für vollelektrische und teilelektrische Personenkraftwägen weiter steigen. Rund 37 % aller befragten Personen präferieren ein Elektrofahrzeug gegenüber einem Fahrzeug mit Verbrennungsmotor für deren nächste Anschaffung.² Ein Faktor für die Evolution des Marktes ist die Weiterentwicklung der aktuell genutzten Lithium-Ionen Technologie. Eine der vielversprechendsten Ansätze ist hierbei die Festkörperzelle (engl. Solid-State-Battery; ff. SSB). Nach Placke et al. und Zhang et al. verspricht die SSB-Technologie einen signifikanten Anstieg der Energiedichte unter hochenergetischer Aktivmaterialien auf bis zu 1000 Wh/l.3,4 Festkörperelektrolyte (engl. Solid-State-Electrolytes; ff. SSE) erlauben den Einsatz hochenergetischer Anodenmaterialien wie Li-Metall, was einem der größten Kundenbedenken, die begrenzte Reichweite von BEVs ^{2,5,6}, entgegenwirken kann. Lithium-Metall ist gegenüber Flüssigelektrolyten instabil, was den Einsatz in einem konventionellen Zellaufbau beschränkt 3,7–9

Ein weiterer Faktor, der das Kaufverhalten für BEVs begrenzt, sind Sicherheitsbedenken gegenüber der Batterietechnologien. Konventionelle Lithium-Ionen-Zellen in batterieelektrischen Fahrzeugen sind per se sichere Technologien, beinhalten jedoch im Flüssigelektrolyt stark brennbare Lösungs- und Bindemittel. Weiteren entstehen brennbare Gase wenn der Elektrolyt aus der Zelle entweicht. Die Ursachen für das Versagen einer oder mehrerer Zellen in einer Batterie sind auf mechanische, thermische oder elektrische Überlast zurückzuführen. 11,13,14 Bei einer mechanischen Überlast versagt der Separator durch Kraft, Deformation oder Penetration 13,15–17, wohingegen bei elektrischer und thermischer Überlast ein Schrumpfen des Separators durch entstehende Wärme 13,18 die Ursache

des Versagens darstellt. Auftretende Versagensarten der Zellen können sehr unterschiedlich ausfallen, von unkritischen Fällen wie dem Funktionsverlust bis zu starken exothermen Reaktionen.¹⁹ Im schlimmsten Fall führt ein Versagen der Einzelzelle zu einer exothermen Reaktion (engl. Thermal-Runaway; ff. TR) und zu einem Überschlag auf benachbarte Zellen (engl. Thermal-Propagation; ff. TP). ^{11,13,14} Nach Feng et al. gibt es unterschiedliche Auslöser und unterschiedliche Aufsetzpunkte, um einen TR und TP zu verhindern – auf Zellebene, Modulebene, Batterieebene oder Fahrzeugebene. Ein beschriebener, im Feld üblicher Auslösefaktor, ist der Fahrzeugunfall. Durch den Unfall entsteht mechanische Last, die bis auf die Zelle weitergeleitet wird.¹³ Schlussendlich entsteht der TR durch einen internen Kurzschluss der Zelle, hervorgerufen durch das mechanische Versagen des Separators. ^{13,15–17}

Durch den Einsatz von SSBs könnten die mechanischen Eigenschaften und Versagensgrenzen, verglichen mit konventionellen Zellen, verändert werden. Es stellt sich die Frage, welchen Einfluss der Solid-State Ansatz auf die mechanische Sicherheit sowie das mechanische Verhalten der Zelle hat und ob sich Potenziale durch eventuell verbesserte Sicherheitseigenschaften ableiten lassen. In der Forschung sind bereits einige Werke zum mechanischen Verhalten von Solid-State-Elektrolytmaterialien zu finden. Diese beschränken sich jedoch meist auf die Untersuchung des elastischen Materialverhaltens in Form der Elastizitätsmodulermittlung (ff. E-Modul). Für polymere und oxidische Festkörperelektrolyte sind vereinzelt Werke zu finden, in welchen die Materialien bis zum Versagen geprüft werden. Sulfidische SSEs werden in der Literatur lediglich in einem kleinen Probenmaßstab mit Nanoindentierungsverfahren oder der Ultraschallspektographie auf deren E-Modulen getestet. Um mechanische Versagensbewertungen durchzuführen sind tiefgehende Analysen notwendig. Unidirektionale mechanische Parameter sind unter verschiedenen Belastungen zu ermitteln. Mit diesen Informationen können valide Materialmodelle gebildet werden, um den Einfluss des Solid-State Ansatzes und mögliche Potenziale für batterieelektrische Fahrzeuge zu ergründen.

2

Von der Fahrzeugebene zu den Zellmaterialien

In diesem Kapitel werden die Grundlagen von batterieelektrischen Fahrzeugen vom Aufbau des Antriebsstrangs bis zur Zelle erläutert. Konventionelle Lithium-Ionen Zelltechnologien und der Solid-State Ansatz werden beschrieben und gegeneinander abgegrenzt. Ein weiterer Teil des Kapitels befasst sich mit der Integration der Zelle in der Fahrzeugstruktur. Dies ist essenziell, um die im Folgenden beschriebenen mechanischen Anforderungen an die Batterie zu erfüllen.

2.1 Komponenten batterieelektrischer Fahrzeuge

Der Antriebsstrang von BEVs besteht aus dem Batterie-Management-System (BMS), der Leistungselektronik, den elektrischen Antriebsmotoren (E-Motoren), einem oder mehreren Getrieben und der Traktionsbatterie. ^{20–23} Ein wichtiger Teil, welcher den Antriebsstrang mit der Außenwelt verbindet, ist die Ladeeinheit, über welche die Traktionsbatterie geladen wird. ^{20,22,23} Eine schematische Ansicht des Antriebsstrangs mit den genannten Komponenten ist in Abbildung 2-1 dargestellt.

Das Herz der batterieelektrischen Fahrzeuge ist die Traktionsbatterie. In der Traktionsbatterie wird die elektrische Energie zum Betrieb des Fahrzeugs gespeichert. Entscheidende Auslegungsparameter für die Batterie sind unter anderem Energiedichte, Leistung, Systemspannung und Sicherheit, aber auch nicht technische Faktoren, wie beispielsweise die Kosten. 20,24,25 Um die genannten und viele weitere Auslegungsparameter zu erreichen, spielen die einzelnen elektrochemischen Speicher, die Zellen, eine entscheidende Rolle. Die Batterie besteht, je nach Aufbauart, aus einzelnen Zellen, die in Modulen oder in einem Block verschaltet sind. 20,22,26 Der genaue Aufbau von der Zelle bis zum Gesamtverbund Batterie wird in Abschnitt 2.2 beschrieben.

Das BMS stellt die Überwachungseinheit der Traktionsbatterie dar. Durch das BMS wird sichergestellt, dass Betriebsgrenzen in der Batterie eingehalten werden. Hierbei werden die

Einzelzellen, Module und die Gesamtbatterie kontinuierlich überwacht. Neben den elektrischen Zustandsgrößen wie Zellspannung, Batteriestrom, Ladezustand (state-of-charge; ff. SoC), Alterungszustand (state-of-health; ff. SoH) und Weiteren werden auch thermische Daten verarbeitet. Durch die Aufnahme der Zelltemperatur wird die Kühlung der Traktionsbatterie aktiv gesteuert. 11,20–22,26–28 Steigt die Temperatur zu stark an oder werden elektrische Grenzwerte überschritten, kann das BMS die Batterie durch Aktivierung des Schütz abschalten. 22 Eine weitere Aufgabe des BMS ist die Datenkommunikation mit dem Fahrzeug. 20,21,28

Die Leistungselektronik ist ein weiterer Teil des Antriebsstrangs. Die Leistungselektronik dient als Bindeglied und Wechselrichter zwischen den E-Motoren und der Traktionsbatterie des BEV, HEV oder P-HEV. Im Allgemeinen übernimmt die Leistungselektronik das Steuern, Umformen und Schalten von elektrischen Leistungen. Im Antriebsstrang von BEVs liegen die Hauptaufgaben der Leistungselektronik in der DC-DC Wandlung zwischen der Batterie und dem Bordnetz und der DC-AC Wandlung zwischen der Batterie und den E-Motoren. 21,22,29

Die E-Motoren dienen zur Wandlung der durch die Batterie bereitgestellten, elektrischen Energie in mechanische Energie im Motorbetrieb und zur Wandlung von mechanischer in elektrische Energie im Generatorbetrieb. 20–22,25,26,29 Die Wandlung wird durch Magnetfelder im Stator und im Rotor des E-Motors erzeugt. Durch die erzeugten Magnetfelder entsteht die sogenannte Lorenzkraft, welche die Drehmomentenerzeugung hervorruft. 22,29 Um die entstehenden Drehmomente und die typischen hohen Drehzahlen von E-Maschinen zu wandeln und auf die Räder zu übertragen, werden ein oder mehrere Getriebe in einem elektrischen Antriebsstrang eingesetzt. 22,25,26

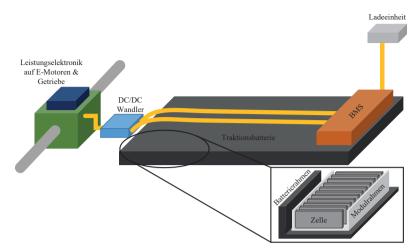


Abbildung 2-1: Schematischer Aufbau eines batterieelektrischen Antriebsstrangs mit den wichtigsten Komponenten und einer Detailansicht eines in der Batterie integrierten Batteriemoduls mit Zellen

2.2 Bauformen von Batteriezellen

Wie in Abschnitt 2.1 beschrieben werden die Zellen in Modulen platziert, welche dann in der Batterie verschaltet oder als Blockverschaltung in die Traktionsbatterie integriert werden. Der modulare Batterieaufbau wird in BEVs aktuell am häufigsten verwendet und deshalb in dieser Arbeit fokussiert. Die Einzelzellen werden in den Bauformen Pouch Zelle, prismatische Zelle und Rundzelle mit jeweils unterschiedlichen Eigenschaften eingesetzt. ^{20,22,26,30–32} Ein Vergleich der Zellbauformen wird in Tabelle 2-1 durchgeführt.

Da Pouchzellen durch deren flexible Hülle große interne Zellvolumenänderungen je Lade-Entlade-Zyklus ohne weitere Maßnahmen aushalten können, wird dieses Zellformat in der vorliegenden Arbeit fokussiert. Die Gründe für die Notwendigkeit der Zellvolumenänderungstoleranz ist in Abschnitt 2.3 beschrieben.

Tabelle 2-1: Gegenüberstellung der Zellbauformen Pouch Zelle, prismatische Zelle sowie Rundzelle mit deren spezifischen Eigenschaften nach Zwicker et al. und Full et al. ^{31,32}

Pouch Zelle	prismatische Zelle	zylindrische Zelle
 weiche Hülle 	 formstabiles Gehäuse 	 formstabiles Gehäuse
 klein- und großformatig 	 großformatig 	 kleine Zellabmessung
 hohe Einzelzellkapazität 	 hohe Einzelzellkapazität 	 geringe Einzelzellkapazität
 große geometrische 	 eingebaute 	 eingebaute
Änderung über SoC und	Sicherheitsfunktion	Sicherheitsfunktion
SoH möglich	 gute thermische 	 hohe Energiedichte
 hohe Leistungsdichte 	Eigenschaften	 hoher
 Kostengünstig 		Standardisierungsgrad

In einem Batteriemodul werden die einzelnen Zellen parallel und oder seriell miteinander verschaltet. Über die serielle Verschaltung der Zellen wird die Gesamtspannung des Batteriesystems definiert. Um die Kapazität bzw. den Energieinhalt zu erhöhen werden der seriellen Verschaltung parallele Zellstränge zugeschaltet. 20,26,32,33 Um Pouchzellen in einem Modul zu integrieren, werden diese auf einen Zellhalter geschraubt oder geschweißt. Im nächsten Schritt werden die Zellen auf den Zellhaltern im Modul unter mechanischer Kompression verbaut und miteinander seriell und parallel verschaltet. Darauffolgend werden die Module mechanisch und elektrisch zur Gesamtbatterie verbunden. 21,26,33 Die Integration der Zellen in die Fahrzeugstruktur wird so ausgelegt, dass die Zellen in der Produktion und dem Betrieb keiner externen mechanischen Last ausgesetzt werden. Auch bei den auslegungs- und zertifizierungsrelevanten Lastfällen wird eine mechanische Belastung durch die Fahrzeugstruktur verhindert.

Die Abmessungen einer Batteriezelle hängen stark mit dem Bauraum eines jeweiligen Fahrzeugs zusammen. Der Fokus liegt bei der Auslegung der Traktionsbatterie auf der bestmöglichen Bauraumausnutzung. Wie Link et al. in ihrer statistischen Analyse beschreiben,

geht der Trend im Pouchzelldesign zu längeren und dickeren Zellen bei gleichbleibendem Volumen.³⁴ Dies bedeutet im Umkehrschluss, dass eine Entwicklung in Richtung flacherer Pouchzellen vorliegt. Die Daten nach Link et al. zeigen für das Jahr 2022, dass sich Zellabmessungen in der Länge von 290-520 mm, Dicke von 9-14 mm, bei einem Zellvolumen von 390-550 ml befinden. Auf diese Marktanalysewerte wird sich in der vorliegenden Arbeit bezogen.

2.3 Lithium-Ionen Batteriezellen und der Festkörperansatz

Eine konventionelle Lithium (ff. Li)-Ionen Zelle besteht aus einem Kupfer- sowie Aluminiumkollektor, den Aktivmaterialien, einem Separator und einem flüssigen Elektrolyten (Abbildung 2-2 a)). Das Aktivmaterial der negativen Elektrode auf dem Kupferkollektor besteht bei konventionellen Zelltechnologien aus Grafit, das Aktivmaterial der positiven Elektrode auf dem Aluminiumkollektor aus einem Li-Metall Oxid. Diese Arbeit betrachtet Lithium-Nickel-Mangan-Kobalt (ff. NMC) als Kathodenmaterial im speziellen. Während der ersten Lade-Entlade-Zyklen bildet sich die Solid-Electrolyte-Interface (ff. SEI)-Schicht auf der Grafitseite. Die SEI ist ein Zersetzungsprodukt aus flüssigem Elektrolyt und Grafit und stellt eine Schutzschicht dar, welche weitere Zersetzungsvorgänge verhindert. 9,20,35

Zwischen der Anodenseite und der Kathodenseite befindet sich ein in Flüssigelektrolyt getränkter Separator. Der flüssige Elektrolyt dient als Li-Ionen Leitelement zwischen der positiven und der negativen Elektrode. Die ionische Leitfähigkeit des Elektrolyten wird über das in organischen Lösungsmitteln (bspw. Ethylencarbonat) gelöste Li-Leitsalz (bspw. LiPF6), hergestellt. ^{20,36} Ein Nachteil der Lösungsmittel, welche essenziell für die Herstellung flüssiger Elektrolyte sind, ist die starke Brennbarkeit und die nach sich ziehende thermische Reaktionsfreudigkeit mit den ionischen Leitsalzen. Die Reaktionsfreudigkeit und Brennbarkeit der Lösungsmittel sind der Zellsicherheit gegenüber als kritisch zu betrachten. ^{13,20,36–41} Ein weiterer Nachteil der flüssigen Elektrolyte ist die Unverträglichkeit mit Li-Metall. Li-Metall auf der Anodenseite kann die Energiedichte der Zellen auf bis zu 1000 Wh/l stark erhöhen ^{3,4}, ist jedoch in Kombination mit konventionellen flüssigen Elektrolyten als gefährlich zu bewerten ^{3,7–9,40,42}.

Der Separator stellt eine Barriere dar, welche eine Elektronenwanderung auf demselben Pfad wie die Li-Ionen unterbindet. Stattdessen fließen die Elektronen während des Ladens und Entladens über einen extern angelegten Strompfad. Separator Materialien werden in drei Klassen unterteilt. Die drei Klassen sind die microporösen Separatoren, Vliesstoffseparatoren und die Separatoren mit Keramikanteilen. 17,36 In der Arbeit von Francis et al. werden einige unterschiedliche Separator Materialien und deren Anforderungen vorgestellt. Sicherheitsrelevante Anforderungen sind beispielsweise die Zugfestigkeit, die Schmelztemperatur und die Schrumpfeigenschaften unter Temperatureinfluss.³⁶ Nimmt der Separator durch mechanische, thermische oder elektrische Einflüsse Schaden, entsteht ein interner Kurzschluss, welcher im schlimmsten Fall für einen TR der Zelle sorgt. 4,13,16-18

Um die Sicherheit der Zellen zu erhöhen und den Einsatz von hochenergetischen Li-Metall-Anoden zu ermöglichen, wird der Solid-State Ansatz als eine vielversprechende Option untersucht. 11,40,43–47 In dieser Arbeit wird Li-Metall als Anodenmaterial betrachtet. Zellen mit Li-Metall Anoden bringen eine Besonderheit während des Ladens und Entladens mit sich. Während konventionelle Li-Ionen-Zellen besonders über den SoH irreversibel wachsen 48,49, atmen Li-Metall Zellen stark reversibel über den SoC. 43–45,50–53 Das bedeutet, dass während des Ladens und Entladens eine Volumenänderung auftritt, welches in einem Pouch-Zellformat am einfachsten aufgenommen werden kann. Bei 100 % SoC weist die Li-Metall-Zelle das größte Volumen auf. Der 100 % SoC Zustand dient als Grundlage für die Untersuchungen dieser Arbeit.

Neben dem Atmungsverhalten der Zellen ist eine zusätzliche Besonderheit bei Li-Metallzellen zu beachten. Damit die Li-Ionen auf der Metallanodenoberfläche homogen abgeschieden werden und die Ionenleitpfade zwischen den Festkörpern Elektrode und Festkörperelektrolyt verbessert werden, werden Li-Metallzellen unter externem mechanischem Druck betrieben. ^{54–59} Durch die homogenere Abscheidung wird das Dendritenwachstum reduziert. Die Reduktion möglicher Dendriten verbessert die Zellsicherheit durch die Risikoverringerung von internen Kurzschlüssen. ^{54,55,58–60} Weitere Effekte des extern aufgebrachten Drucks sind unter anderem der sinkende Innenwiderstand, die Leistungsverbesserung und die geringere Alterung. ^{54,56,58} Literaturwerte zur Höhe des Drucks auf Li-Metallzellen schwanken stark zwischen 0,06 MPa und 14 MPa. ^{56–59}

Janek und Zeier zeigen in ihrer Arbeit, dass die Li-Ionen und Elektronen Leitpfade identisch zu konventionellen Zelltechnologien sind. Der Unterschied zwischen konventionellen Li-Ionen

Zellen und dem All-Solid-State-Ansatz ist der Austausch des Separators sowie des flüssigen Elektrolyten durch einen Festkörperelektrolyten (Abbildung 2-2 b)). Der Festkörperelektrolyt übernimmt die Aufgabe der Ionenleitung sowie der Elektronensperrung. 44,53,61-63 Die Festkörperelektrolyte werden in die Hauptgruppen der organischen, anorganischen und Composite Elektrolyte, einer Mischung aus organischen und anorganischen Anteilen, unterteilt. 43,45,61,63,64 In der aktuellen Forschung und Entwicklung von Solid-State-Zellen finden sich auch teilweise Flüssigelektrolytanteile – der sogenannte Hybrid-Solid-State Ansatz. 43,65 In dieser Arbeit wird der Solid-State Ansatz betrachtet.

In Punkto Sicherheit gelten Solid-State Zellen im allgemeinen Verständnis als sicherer gegenüber konventionellen Zelltechnologien. 11,40,43,44,46,47 Verschiedenste Veröffentlichungen zeigen, dass die thermische Stabilität der Festkörperelektrolyte die der konventionellen Flüssigelektrolyte übertreffen. 11,13,46,47,66 Aus diesem Grund wird häufig auf verbesserte Sicherheitseigenschaften der Zellen geschlossen. Bates et al zeigen in ihrer Arbeit, dass diese Schlussfolgerung nicht unbedingt zutreffend ist. In thermodynamischen Modellen von konventionellen Zellen mit Grafit Anode, Hybrid-Solid-State Zellen und Solid-State Zellen mit Li-Metall Anode werden unterschiedliche Versagensmechanismen simuliert und die entstehende Temperatur berechnet. Die Studie zeigt, dass die Sicherheit von Hybrid-Solid-State und Solid-State Zellen im externen Aufheizlastfall verbessert wird. Sobald jedoch die Integrität des Solid-State Elektrolyten durch Dendritenwachstum oder mechanische Belastung in Mitleidenschaft gezogen wird, gilt dies nicht mehr. In diesem Fall erzeugt die Solid-State Zelle sogar höhere Temperaturen als eine konventionelle Zelle. 11,65 Aus diesem Grund ist es essenziell, neben den thermischen und elektrischen Eigenschaften, besonders die mechanischen Versagensparameter der Festkörperelektrolyte zu bestimmen, um eine verlässliche Aussage über die Zellsicherheit zu treffen. Mechanischen Eigenschaften von Festkörperelektrolyten unter externer Belastung bis zum Versagen sind aktuell nur geringfügig erforscht. Forschungsergebnisse beschränken sich hauptsächlich auf die E-Modul und Härteermittlung auf Micro-Ebene (siehe Abschnitt 2.5).

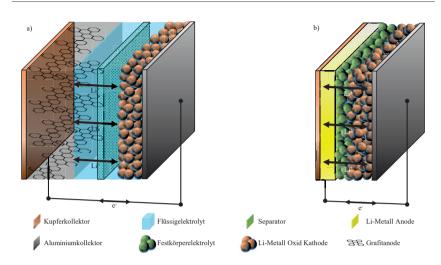


Abbildung 2-2: a) Ein schematischer Aufbau einer Li-Ionen Zelle mit konventionellem Flüssigelektrolyt, Grafit Anode und Li-Metall-Oxid Kathode. b) Ein schematischer Aufbau einer Solid-State Zelle mit einem Festkörperelektrolyten, einer Li-Metall Anode und einer Li-Metall Oxid Kathode.

2.4 Untersuchte Zellmaterialien

Wie bereits in Abschnitt 2.3 beschrieben werden Festkörperelektrolyte in die Hauptgruppen der anorganischen, organischen und Composite Elektrolyte eingeteilt. In dieser Arbeit wird ein polymerer Elektrolyt aus der Hauptgruppe der organischen Elektrolyte, drei oxidische Elektrolyte aus der Hauptgruppe der anorganischen Hauptgruppe sowie ein anorganischer sulfidischer Elektrolyt untersucht. Als Aktivmaterialien werden eine Nickel-Mangan-Kobalt Kathode (NMC) und eine Li-Metall Anode herangezogen.

Polymere Feststoffelektrolyte: Um aus Polymeren polymere Festkörperelektrolyte zu erzeugen sind diese mit Lithium in Form von Leitsalzen zu kombinieren. Im Kombinationsprozess werden in die polymere Materialmatrix Leitsalze gelöst. 41,67–69 Die ionischen Leitpfade führen in Polymeren über die Kettenbewegung der Polymerstruktur. Je beweglicher die Ketten, desto besser die ionische Leitfähigkeit. Um die ionische Leitfähigkeit zu verbessern, werden Solid-State Zellen mit polymeren Elektrolyten bestmöglich über Raumtemperatur betrieben, da die Leitfähigkeit bei und unter Raumtemperatur vergleichsweise niedrig ist. 40,41,68–72