
1 INTRODUCTION 

1.1 BACKGROUND AND APPLICATIONS 
Polymer materials are suitable for numerous applications in a variety of fields due to their 
good processability, high durability, low price, and low weight. They are among the most 
adaptable materials and are utilized for diverse tasks. However, there are limits to polymer 
applications due to their crucial weak point: thermal conductivity.  

With 𝜆𝜆 = (0.1 … 0.5) W m−1 K−1 [1–4], this is far below that of metallic and ceramic 
materials. In micro and power electronic systems, heat loss often needs to be transferred to 
cooling systems or the environment across very small areas and with minimal temperature 
drops. By using highly thermally conductive materials in the heat path, the system temper-
ature can be sustainably reduced and the service life of the system increased. To employ 
polymer materials in these applications, they must be modified with highly thermally con-
ductive, granular fillers. Recent review articles report numerous use cases and require-
ments for thermally conductive filled polymers in electronic applications [2,4–6]. Figure 
1.1 illustrates typical applications of thermally conductive filled polymers in electronics 
and shows exemplary cross-sections through the material structure. 

Figure 1.1. Thermally conductive filled polymer applications in electronics.  
Thermal interface materials: Thermal pad (a) and thermal grease (b), potting compound (c), 
and insulated metal substrate (d). The inner illustrations show cross-sections of typical ma-
terial compositions in the corresponding applications. 

XII Nomenclature and Abbreviations

Important indices 

app Apparent
A Agglomerate
bulk Bulk material
C Continuous phase
C Contact
c Cold
calib Calibration
D Disperse phase
eff Effective
el Electron
fit Fitted
geo Geometrical
G Gas
h Hot
I Interfacial
ITZ Interfacial transition zone
K Kapitza
L Lower

l Larger (fractions)
max Maximum
min Minimum
p Particle
ph Phonon
R Residual
r Relative
ref Reference
RND Random (uncertainty)
shrink (Particle) shrinkage
S Substrate
SYS Systematic (uncertainty)
TIM Thermal interface material
tot Total
th Thermal
U Upper

Abbreviations  

AMM Acoustic Mismatch Model
CCP Cubic Close Packing
DMM Diffuse Mismatch Model
EMA Effective Medium Approach
FEM Finite Element Method
FPS Filled Polymer to Substrate 
FVM Finite Volume Method
GPU Graphics Processing Unit
HCP Hexagonal Close Packing
IMS Insulated Metal Substrate
IR Infrared

ITZ Interfacial Transition Zone
LED Light Emitting Diode 
PPD Particle-Particle Distance 
PSD Particle-Substrate Distance 
RCP Random Close Packing 
RLP Random Loose Packing 
RMP Random Medium Dense Packing 
RNM Random Network Model 
RVE Representative Volume Element 
SCP Simple Cubic Packing 
TIM Thermal Interface Material 
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1.2 OBJECTIVE AND METHODS

The targeted and efficient development of advanced, high-performance polymer compo-
sites requires a profound understanding of the heat transport processes in the materials.
From afar, it seems to be obvious and is well known that thermal conductivity increases 
with the concentration of highly thermally conductive fillers and that in principle, more 
thermally conductive base materials enable higher effective thermal conductivities [29]. It 
follows that it is crucial how effectively the filler particles can form a thermally conductive 
network in the polymer matrix. This ability probably depends on many factors, such as
particle shape, size distribution and dispersion. The exemplary cross-sections in Figure 1.1
show the complexity and versatility of the material structures. For thermal interface mate-
rials, shown in part (a) and part (b), multi-scale filler blends with grain sizes in different
orders of magnitude are used to achieve the highest possible filler volume fractions. The
result is a highly complex microstructure with filler concentrations close to the maximum
packing density. Pottings (c) require good flowability for processing, i.e., a low viscosity, 
thus the possible filler volume fraction is very limited. In these loose filler packings, ag-
glomeration and sedimentation phenomena are favored. With IMS, the complexity of the 
microstructure increases because of the two contact surfaces of the metal layers above and
below the dielectric layer. Often only a few particle layers are between the contact surfaces.
This influences the overall packing structure.

Numerous recent review articles conclude that there are still many open questions and un-
explored relationships, especially with regard to the microscopic filler packing structure
[2,4,5,19,29,30]. The most concise conclusions were formulated by Burger et al. in 2016
[29],

“Nevertheless, it will be crucial to focus in future work on the structural and geo-
metrical aspects of the materials, which are essential parameters to increase ther-
mal conductivity.”

and Xu et al. in 2021 [5], 

“For the critical thermal percolation [...], existing knowledge is still very limited
and a universal picture about the threshold of the thermal percolation is still lack-
ing. Open questions remain on how to form a more effective heat conduction net-
work with less thermal resistances between fillers.”

There remain questions regarding whether there are pronounced percolation effects in ther-
mally conductive filled polymers and how the formation of thermally conductive paths in 
the material can be favored [3,5,30]. Furthermore, Yang et al. [6] see a need to improve 
and expand existing approaches for calculation and simulation, as these have so far ne-
glected many important parameters. In principle, however, detailed simulation and calcu-
lation approaches promise important insights into the microscopic heat transport processes 

2 Introduction 

Thermal interface materials (TIMs), such as thermal pads (a) or thermal grease (b), are 
used to optimize thermal transfer between two solids in a heat path. For example, between 
a chip and a heat sink or, in the automotive sector, a battery module and a cooling unit. 
Surface roughness and manufacturing tolerances of the two contact partners lead to poor 
thermal contact and air inclusions. Soft and elastic thermal interface materials can displace 
this air and thus optimize thermal transfer. A review of materials, established technologies, 
applications, and recent advances is given in [5,7–11]. In part (c) of Figure 1.1 a potting 
or encapsulant is shown. The main purpose of these materials is to protect the electronic 
assembly from environmental impact, while guaranteeing good heat dissipation. Shen and 
Feng [12] published an extensive review on the recent advances in encapsulants for light 
emitting diodes (LEDs) in 2023.  

As a last example, an insulated metal substrate (IMS) is presented in part (d) of Figure 1.1. 
Electronic components with large power densities, such as LEDs, require a circuit board 
with good heat spreading characteristics. An IMS is a layered structure consisting of an 
aluminum or copper base plate, a thin dielectric intermediate layer, and a thin copper layer 
into which the circuit paths can be inserted. While copper and aluminum provide outstand-
ing thermal conductivities, the dielectric layer in between is always the bottleneck for heat 
dissipation. The basis is usually an epoxy polymer, modified with ceramic filler particles. 
The layers are kept very thin, often less than 100 µm, to ensure that the thermal resistance 
is as low as possible. The structure, requirements, applications, and current advances in 
IMS are described in [13–15].  

Thermally conductive fillers are not only used for polymers in the applications shown. 
Other examples are injection-molded casings or heat sinks [16–18], or thermally conduc-
tive adhesives [19].  

The use of thermally conductive polymers in all those applications has been established for 
decades. Recent market research reports a large increase in market volume of thermally 
conductive filled polymers and predicts further significant growth until the beginning of 
the 2030s. This is primarily due to the increasing digitalization and simultaneous miniatur-
ization of electronic systems [6]. For thermal interface materials a compound annual 
growth rate of 10.49 % − 21 % is predicted [20–23]. The market growth for pottings and 
IMS is assumed at an annual rate of 3.9 % − 6.15 % [24–27]. For thermally conductive 
compounds, an annual growth of 12.8 % is predicted [28]. 
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2 PHYSICAL BASICS OF HEAT CONDUCTION

This introductory chapter provides an overview of the physical mechanism of heat conduc-
tion, first in solids and later in composites. In addition, it explains the phenomenon of ther-
mal contact resistance and the resulting need for thermal interface materials. Thermal in-
terface materials are a major area of application for the investigations and findings of this 
thesis. The chapter finishes with a brief overview of the current advances in the develop-
ment of thermally conductive polymer composites.

2.1 HEAT CONDUCTION IN SOLIDS

In physics, there are various mechanisms of heat transport including: heat conduction 
through matter, heat transport through mass transport, and heat radiation. The basics of 
heat conduction in matter, and particularly in solids, are discussed below. Heat conduction 
is the transport of thermal energy through matter, mainly by diffusion of internal energy
when a driving temperature gradient is imposed. In 1822, Fourier formulated the propor-
tionality known today as Fourier’s law [31]

𝒒𝒒 = −𝜆𝜆 𝛁𝛁𝑇𝑇 (2.1)

between the conducted heat flux 𝒒𝒒 (vector) and the applied temperature gradient 𝛁𝛁𝑇𝑇 . Ac-
cording to the second law of thermodynamics, heat will always flow against the tempera-
ture gradient. The proportionality constant between heat flux and temperature gradient in
Fourier’s law is known as thermal conductivity. Thermal conductivity 𝜆𝜆 (second-order ten-
sor in Eq. (2.1)) is an intrinsic thermophysical property of the heat conducting matter, 
nowadays specified with

[𝜆𝜆] = W m−1 K−1 . (2.2)

In general, it is a temperature dependent quantity [32,33], and can also depend on applied 
pressures, particularly for compressible matter [33]. The temperature dependence is often
ignored when small temperature differences are applied [32]. Furthermore, thermal con-
ductivity can be an anisotropic material property.

The theory of heat conduction in solids has been worked out in detail and is widely ac-
cepted. It is part of the basic repertoire of modern solid-state physics and is described in 
detail in numerous textbooks [34–37]. As the theory is very complex and multifaceted,
there is additional specialized literature focusing solely on thermal conductivity [38–40]. 
Given here is a rough and simplified introduction to the topic for the purpose of assessing 
the differences in thermal conductivities of the polymer matrices and the metallic and non-
metallic fillers and evaluating the heat transfer across the interface from matrix to particle.
Heat transfer through solids cannot be depicted using generally applicable models [41] and 
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and can help answer the open questions. With this as a basis, the present work is intended 
to make a decisive contribution to the development of a detailed and comprehensive un-
derstanding of microscopic heat transport processes in filled polymers. The aim is a de-
tailed investigation and quantification of the effects of filler properties, geometric packing 
structure, and interactions of different fillers in mixtures. The focus is on the effective ther-
mal conductivity of the particle-filled polymer and filled polymer to substrate (FPS) tran-
sitions, which are of exceptional importance in IMS, for example. Both phenomena are 
investigated experimentally and using newly developed simulation methods.  

Experimental techniques are mainly used to access macroscopic material properties. Since 
the spatial resolution of simulative approaches is unlimited in principle, these techniques 
allow analyses at the microscopic level which may then help explain macroscopic obser-
vations. Local heat transport processes inside the materials can be analyzed that are not 
experimentally accessible. Experimental, and simulative investigations combine to allow 
derivation of empirical theories on the impact of the geometric microstructure of filled 
polymers on their heat transport properties. This is a common strategy used also in particle 
physics, as the numerical reconstruction of processes can reach spatial and time scales for 
which there are no experimental techniques yet available.  

Chapter 2 begins with a discussion of the physical principles of heat conduction in solids 
and composites. Thermal interfacial and thermal contact resistances are introduced and 
discussed regarding their significance for filled polymers. A comprehensive summary of 
the current knowledge and state of the art of thermally conductive filled polymer compo-
sites are presented. Chapter 3 provides an overview of the polymers and fillers used in the 
experimental investigations. Additionally presented is an overview of the two main meas-
urement methods: the steady-state cylinder method and the newly developed micro ther-
mography method. Chapter 4 includes numerical and experimental studies on the impact 
of filler properties and packing structures on the effective thermal conductivity of single 
scale filled polymers. The newly developed microscale modeling method used for these 
investigations is introduced at the beginning. Chapter 5 deals with the analysis of multi-
scale filled polymers with an emphasis on the interaction of different fillers at different 
scales. Once again, both experimental and numerical studies are presented. Chapter 6 fo-
cuses on FPS transitions and the contact resistances that occur using new experimental and 
simulative methods. Chapter 7 summarizes the findings and completes the comprehensive 
picture of heat conduction in particle-filled polymers. 
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A comparison with Fourier’s law in one-dimensional notation

𝑞𝑞𝑥𝑥 = −𝜆𝜆
d𝑇𝑇
d𝑥𝑥

, (2.7)

results in a thermal conductivity [33,35,41]

𝜆𝜆 =
1
3

𝐶𝐶V𝑢𝑢2𝜏𝜏r . (2.8)

Finally, 𝑢𝑢𝜏𝜏r can be replaced with Eq. (2.3), resulting in

𝜆𝜆 =
1
3

𝐶𝐶V𝑢𝑢𝑢𝑢 , (2.9)

as a general model for the thermal conductivity of an ideal gas, when considering the free 
gas molecules as the carriers of heat.

In solids, different carriers contribute to heat conduction. The main carriers are lattice 
waves and electrons. Less dominant carriers are magnetic excitations, spin waves, and ra-
diation [40,42,43]. In non-metallic solids without any free electrons, the lattice waves dom-
inate and are often the only noticed carriers [33,38,40,42,44]. In metallic solids, the elec-
tron contribution to heat conduction can predominate [33,40,42,44]. The total thermal con-
ductivity can be generally expressed as the sum

𝜆𝜆 =
1
3

∑ 𝐶𝐶V,𝑖𝑖𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖
𝑖𝑖

(2.10)

of all contributions, adapted from Eq. (2.9). The subscript 𝑖𝑖 stands for the respective carrier 
(electrons, lattice waves, …). 𝐶𝐶V,𝑖𝑖 is the heat capacity per unit volume due to the carrier 𝑖𝑖,
𝑢𝑢𝑖𝑖 is the velocity of the carrier, and 𝑙𝑙𝑖𝑖 its mean free path. At least velocity and mean free
path for the different carriers are not as clearly defined as for gases. Models must be found
to approximate them. In the following section, the thermal conductivity of non-metallic
solids, metallic solids, and the special case of polymers are discussed.

2.1.1 NON-METALLIC SOLIDS

In contrast to the atoms of a gas, the atoms of a solid do not move freely but have a fixed
equilibrium position. Many solids have a crystalline structure with a regular lattice [36]. 
The atoms perform thermal oscillations around their equilibrium position. As the temper-
ature rises, the internal energy and thus the vibrational energy of the solid increases. Since 
the atoms are closely coupled, a temperature increase on one side of the solid and thus an
increase in vibrational energy is transported further in the body by lattice waves. Lattice 
waves are primarily structure-borne sound waves that propagate through the solid body. In
1932, Frenkel introduced the term “phonons” for the energy quanta transported by these 
waves [45]. To simplify, the phonons can be imagined as free gas particles. They move 

6 Physical basics of heat conduction 

there is no possibility for an exact prediction of thermal conductivity [40]. Nevertheless, a 
general impression and comprehension of the relationships can be acquired by discussing 
different basic approaches and models. To begin, a short introduction is given using the 
simple example of an ideal gas, before continuing with heat conduction in solids. A very 
helpful derivation can be performed, based on the theory of ideal gas molecular motion, 
following e.g., [33,35,41].  

All particles of the gas are handled as point masses, perform a disordered thermal motion, 
and collide perfectly elastic with each other. The precondition for the validity of the fol-
lowing consideration is the existence of a sufficient number of individual particles for the 
thermodynamic equilibrium. The average time between two collisions of a particle is 𝜏𝜏r 
and the average absolute velocity of all particles is 𝑢𝑢. 𝜏𝜏r is sometimes referred to as relax-
ation time. The mean free path, the average distance a particle can travel freely, is [41]  

𝑙𝑙 = 𝑢𝑢𝜏𝜏r . (2.3) 

To induce one-dimensional heat conduction in the 𝑥𝑥 direction, a temperature difference 
∆𝑇𝑇 = 𝑇𝑇2 − 𝑇𝑇1 with 𝑇𝑇1 > 𝑇𝑇2 is applied at the distance ∆𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1. On average, 1 3⁄  
of all particles move in 𝑥𝑥 direction and contribute to the heat conduction. The position 
𝑥𝑥1 < 𝑥𝑥 < 𝑥𝑥2 is considered. Particles that reach this position with positive velocity had 
their last collision at position 𝑥𝑥 − 𝑢𝑢𝜏𝜏r, and particles that reach this position with negative 
velocity had their last collision at position 𝑥𝑥 + 𝑢𝑢𝜏𝜏r. Let 𝑈𝑈(𝑇𝑇 ) be the temperature-dependent 
internal energy per particle. Then the particle with positive velocity brings the higher en-
ergy 𝑈𝑈(𝑇𝑇 (𝑥𝑥 − 𝑢𝑢𝜏𝜏r)) and the particle with negative velocity brings the lower energy 
𝑈𝑈(𝑇𝑇 (𝑥𝑥 + 𝑢𝑢𝜏𝜏r)) to position 𝑥𝑥. To calculate the net heat flux 𝑞𝑞𝑥𝑥 at the position 𝑥𝑥, the energies 
transferred by individual particles must be added together and multiplied by the mean par-
ticle velocity 𝑢𝑢 and the number of particles 𝑛𝑛 per Volume 𝑉𝑉 . 

𝑞𝑞𝑥𝑥 = −
1
6

𝑛𝑛
𝑉𝑉

𝑢𝑢[𝑈𝑈(𝑇𝑇 (𝑥𝑥 + 𝑢𝑢𝜏𝜏r)) − 𝑈𝑈(𝑇𝑇 (𝑥𝑥 − 𝑢𝑢𝜏𝜏r))] . (2.4) 

The sign determines the direction of the heat flow and the pre-factor 1 6⁄  considers that on 
average 1 3⁄  of all particles move in the 𝑥𝑥 direction. 1 2⁄  each in the positive and negative 
𝑥𝑥 direction. If 𝜏𝜏r and thus 𝑙𝑙 are small, 𝑞𝑞𝑥𝑥 can be written as in [35] 

𝑞𝑞𝑥𝑥 = −
1
6

𝑛𝑛
𝑉𝑉

𝑢𝑢
d𝑈𝑈
d𝑇𝑇

d𝑇𝑇
d𝑥𝑥

2𝑢𝑢𝜏𝜏r . (2.5) 

𝑛𝑛
𝑉𝑉

d𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝐶𝐶V is the heat capacity per unit volume and d𝑇𝑇 d𝑥𝑥⁄  the local temperature gradient 

in 𝑥𝑥 direction. After substitution and rearrangement, the equation becomes 

𝑞𝑞𝑥𝑥 = −
1
3

𝐶𝐶V𝑢𝑢2𝜏𝜏r
d𝑇𝑇
d𝑥𝑥

 . (2.6) 
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gas molecules as the carriers of heat. 
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tron contribution to heat conduction can predominate [33,40,42,44]. The total thermal con-
ductivity can be generally expressed as the sum 

𝜆𝜆 =
1
3

∑ 𝐶𝐶V,𝑖𝑖𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖
𝑖𝑖
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of all contributions, adapted from Eq. (2.9). The subscript 𝑖𝑖 stands for the respective carrier 
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waves are primarily structure-borne sound waves that propagate through the solid body. In 
1932, Frenkel introduced the term “phonons” for the energy quanta transported by these 
waves [45]. To simplify, the phonons can be imagined as free gas particles. They move 
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simple example of an ideal gas, before continuing with heat conduction in solids. A very 
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and collide perfectly elastic with each other. The precondition for the validity of the fol-
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𝑞𝑞𝑥𝑥 = −
1
6

𝑛𝑛
𝑉𝑉

𝑢𝑢[𝑈𝑈(𝑇𝑇 (𝑥𝑥 + 𝑢𝑢𝜏𝜏r)) − 𝑈𝑈(𝑇𝑇 (𝑥𝑥 − 𝑢𝑢𝜏𝜏r))] . (2.4) 

The sign determines the direction of the heat flow and the pre-factor 1 6⁄  considers that on 
average 1 3⁄  of all particles move in the 𝑥𝑥 direction. 1 2⁄  each in the positive and negative 
𝑥𝑥 direction. If 𝜏𝜏r and thus 𝑙𝑙 are small, 𝑞𝑞𝑥𝑥 can be written as in [35] 

𝑞𝑞𝑥𝑥 = −
1
6

𝑛𝑛
𝑉𝑉

𝑢𝑢
d𝑈𝑈
d𝑇𝑇

d𝑇𝑇
d𝑥𝑥

2𝑢𝑢𝜏𝜏r . (2.5) 

𝑛𝑛
𝑉𝑉

d𝑈𝑈
𝑑𝑑𝑑𝑑 = 𝐶𝐶V is the heat capacity per unit volume and d𝑇𝑇 d𝑥𝑥⁄  the local temperature gradient 

in 𝑥𝑥 direction. After substitution and rearrangement, the equation becomes 

𝑞𝑞𝑥𝑥 = −
1
3

𝐶𝐶V𝑢𝑢2𝜏𝜏r
d𝑇𝑇
d𝑥𝑥

 . (2.6) 
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is scattering caused by the collisions of phonons with impurities, crystal defects, grain 
boundaries, and external boundaries [41]. The phonons are scattered from one mode into 
another [46]. Anharmonicity in real crystal lattices additionally causes phonon-phonon col-
lisions. However phonon-phonon collisions do not necessarily contribute to limiting the 
mean free path [36]. If a normal process (N-process) occurs, neither momentum nor energy 
flow is affected. In 1929, Peierls [50] showed that, in addition to N-processes, there are 
also Umklapp-processes (U-processes) that lead to an intrinsic resistance, since the direc-
tion of the energy flow changes after the phonon-phonon collision (German: umklappen, 
English: to flip over). The lattice absorbs momentum [36]. As given in Eq. (2.11), the 
limited mean free path is a function of the frequency and generally also of the temperature 
𝑙𝑙ph(𝜔𝜔, 𝑇𝑇 ) [36,38,40,46]. Thus, the specific heat 𝐶𝐶V,ph and the mean free path 𝑙𝑙ph are tem-
perature-dependent, resulting in a strongly temperature-dependent lattice component of 
thermal conductivity 𝜆𝜆ph(𝑇𝑇 ).  

The influence of temperature on the specific heat is particularly evident at very low tem-
peratures (𝑇𝑇 < ΘD/3) in a 𝑇𝑇 3 dependency. At high temperatures (𝑇𝑇 > ΘD), the heat ca-
pacity is approximately constant. At low temperatures, the influence of boundary collisions 
increases as the low frequencies become more dominant [44]. The mean free path can be 
limited by the dimensions of the sample [36,42]. As the effects of low temperatures are 
strongly pronounced, this range is in focus of certain specialized work [51,52]. In general, 
the thermal conductivity in this range increases with temperature. The thermal conductivity 
then reaches its maximum in the intermediate temperature range before decreasing again 
due to the growing influence of defect and impurity scattering [38,41,43]. The mean free 
path decreases stronger than the heat capacity increases. Further increasing temperatures 
increase the probability of phonon-phonon collisions and cause the thermal conductivity 
to drop further, approximately proportional to 𝑇𝑇 −1 in the high temperature range [41,42]. 

The discussion thus far has been limited to crystalline solids with long-range order in struc-
ture. However, glasses and many polymers do not have long-range order. Section 2.1.3 is 
explicitly dedicated to polymers. For the sake of completeness, however, a few general 
connections will be made here.  

Amorphous structures tend to have lower thermal conductivities than crystals [39,41]. The-
ories for predicting the thermal conductivity of amorphous solids emerged long after the 
fundamental theories for crystalline solids [33,42]. However, it was established early that 
the assumption of a constant, temperature-independent mean free path is sufficiently good, 
at least in the range of ordinary (e.g., room temperature) and high temperatures [41,42]. 
The mean free path in amorphous solids is closely linked to the structural length units of 
the solids [38,41]. In polymers, these are the building blocks of the polymer chains. 
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through the lattice, transporting a certain thermal energy at a specific velocity and over a 
certain mean path. This idea supports the use of the Eq. (2.9) or (2.10) to describe the 
lattice contribution 𝜆𝜆ph to the overall thermal conductivity. The objective quantities of the 
following discussion are therefore the heat capacity of the lattice waves, their propagation 
velocity, and their mean free path. Comprehensive descriptions of the theoretical founda-
tions and models developed over the decades can be found in [38–41,43,46]. Brief sum-
maries of the key aspects are presented in [42,44,47]. Such a description is also provided 
here for introductory purposes.  

The lattice waves occur in a broad frequency spectrum. The wavelength of the occurring 
vibration modes starts at atomic dimensions and extends to long waves comparable to the 
external dimensions [42]. Of particular interest are the propagating modes. To consider the 
specific contribution of the individual angular frequencies 𝜔𝜔, the basic Eqs. (2.9) or (2.10) 
can be generalized to [42] 

𝜆𝜆ph =
1
3

∫ 𝐶𝐶V,ph(𝜔𝜔)𝑢𝑢ph𝑙𝑙ph(𝜔𝜔)
𝜔𝜔D

0
d𝜔𝜔 (2.11) 

using the Debye theory [48] in good approximation. Strictly taken, a differentiation of the 
polarization should also be taken into account [46]. For a general discussion of the rela-
tionships, however, Eq. (2.11) will suffice. Frequencies up to a cutoff value 𝜔𝜔D, called 
Debye frequency, are considered [37,41,42,46]. It is selected to include 3𝑁𝑁  modes, with 
𝑁𝑁  being the number of atoms per unit volume. In the simplest form, 𝑢𝑢ph is the velocity of 
sound averaged over the transverse and longitudinal velocities [41]. 𝐶𝐶V,ph(𝜔𝜔) d𝜔𝜔 is the 
specific heat contribution of the corresponding frequency interval with [42,49] 

𝐶𝐶V,ph(𝜔𝜔) d𝜔𝜔 = 9𝑁𝑁𝑘𝑘B (
𝑇𝑇

ΘD
)

3 𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2  d𝜔𝜔 , (2.12) 

where 𝑘𝑘B is the Boltzmann constant, 𝑇𝑇  the absolute temperature, ΘD the Debye tempera-
ture of the solid, and 𝑥𝑥 = ℏ𝜔𝜔 𝑘𝑘B𝑇𝑇⁄ , with ℏ being the Planck constant divided by 2𝜋𝜋. The 
Debye temperature is [37] 

ΘD =
ℏ𝜔𝜔D
𝑘𝑘B 

=
ℏ𝑢𝑢ph

𝑘𝑘B 
√6𝜋𝜋2𝑁𝑁

𝑉𝑉
3  (2.13) 

for a crystal with 𝑁𝑁  oscillators (atoms) in the volume 𝑉𝑉 . Even though the Debye model 
for specific heat only provides a rough approximation, it is regularly used, as the influence 
of the uncertainties in the determination of the mean free path is much greater [42,46]. If 
there were infinite ideal crystals, with perfectly regular structures and harmonic interatomic 
forces, the mean free path and thus the thermal conductivity would be infinite [46]. In real 
solids, there are barriers that limit the mean free path and thus limit heat transport. There 



Heat conduction in solids 9 

 

 

is scattering caused by the collisions of phonons with impurities, crystal defects, grain 
boundaries, and external boundaries [41]. The phonons are scattered from one mode into 
another [46]. Anharmonicity in real crystal lattices additionally causes phonon-phonon col-
lisions. However phonon-phonon collisions do not necessarily contribute to limiting the 
mean free path [36]. If a normal process (N-process) occurs, neither momentum nor energy 
flow is affected. In 1929, Peierls [50] showed that, in addition to N-processes, there are 
also Umklapp-processes (U-processes) that lead to an intrinsic resistance, since the direc-
tion of the energy flow changes after the phonon-phonon collision (German: umklappen, 
English: to flip over). The lattice absorbs momentum [36]. As given in Eq. (2.11), the 
limited mean free path is a function of the frequency and generally also of the temperature 
𝑙𝑙ph(𝜔𝜔, 𝑇𝑇 ) [36,38,40,46]. Thus, the specific heat 𝐶𝐶V,ph and the mean free path 𝑙𝑙ph are tem-
perature-dependent, resulting in a strongly temperature-dependent lattice component of 
thermal conductivity 𝜆𝜆ph(𝑇𝑇 ).  

The influence of temperature on the specific heat is particularly evident at very low tem-
peratures (𝑇𝑇 < ΘD/3) in a 𝑇𝑇 3 dependency. At high temperatures (𝑇𝑇 > ΘD), the heat ca-
pacity is approximately constant. At low temperatures, the influence of boundary collisions 
increases as the low frequencies become more dominant [44]. The mean free path can be 
limited by the dimensions of the sample [36,42]. As the effects of low temperatures are 
strongly pronounced, this range is in focus of certain specialized work [51,52]. In general, 
the thermal conductivity in this range increases with temperature. The thermal conductivity 
then reaches its maximum in the intermediate temperature range before decreasing again 
due to the growing influence of defect and impurity scattering [38,41,43]. The mean free 
path decreases stronger than the heat capacity increases. Further increasing temperatures 
increase the probability of phonon-phonon collisions and cause the thermal conductivity 
to drop further, approximately proportional to 𝑇𝑇 −1 in the high temperature range [41,42]. 

The discussion thus far has been limited to crystalline solids with long-range order in struc-
ture. However, glasses and many polymers do not have long-range order. Section 2.1.3 is 
explicitly dedicated to polymers. For the sake of completeness, however, a few general 
connections will be made here.  

Amorphous structures tend to have lower thermal conductivities than crystals [39,41]. The-
ories for predicting the thermal conductivity of amorphous solids emerged long after the 
fundamental theories for crystalline solids [33,42]. However, it was established early that 
the assumption of a constant, temperature-independent mean free path is sufficiently good, 
at least in the range of ordinary (e.g., room temperature) and high temperatures [41,42]. 
The mean free path in amorphous solids is closely linked to the structural length units of 
the solids [38,41]. In polymers, these are the building blocks of the polymer chains. 

 

8 Physical basics of heat conduction 

 

 

through the lattice, transporting a certain thermal energy at a specific velocity and over a 
certain mean path. This idea supports the use of the Eq. (2.9) or (2.10) to describe the 
lattice contribution 𝜆𝜆ph to the overall thermal conductivity. The objective quantities of the 
following discussion are therefore the heat capacity of the lattice waves, their propagation 
velocity, and their mean free path. Comprehensive descriptions of the theoretical founda-
tions and models developed over the decades can be found in [38–41,43,46]. Brief sum-
maries of the key aspects are presented in [42,44,47]. Such a description is also provided 
here for introductory purposes.  

The lattice waves occur in a broad frequency spectrum. The wavelength of the occurring 
vibration modes starts at atomic dimensions and extends to long waves comparable to the 
external dimensions [42]. Of particular interest are the propagating modes. To consider the 
specific contribution of the individual angular frequencies 𝜔𝜔, the basic Eqs. (2.9) or (2.10) 
can be generalized to [42] 

𝜆𝜆ph =
1
3

∫ 𝐶𝐶V,ph(𝜔𝜔)𝑢𝑢ph𝑙𝑙ph(𝜔𝜔)
𝜔𝜔D

0
d𝜔𝜔 (2.11) 

using the Debye theory [48] in good approximation. Strictly taken, a differentiation of the 
polarization should also be taken into account [46]. For a general discussion of the rela-
tionships, however, Eq. (2.11) will suffice. Frequencies up to a cutoff value 𝜔𝜔D, called 
Debye frequency, are considered [37,41,42,46]. It is selected to include 3𝑁𝑁  modes, with 
𝑁𝑁  being the number of atoms per unit volume. In the simplest form, 𝑢𝑢ph is the velocity of 
sound averaged over the transverse and longitudinal velocities [41]. 𝐶𝐶V,ph(𝜔𝜔) d𝜔𝜔 is the 
specific heat contribution of the corresponding frequency interval with [42,49] 

𝐶𝐶V,ph(𝜔𝜔) d𝜔𝜔 = 9𝑁𝑁𝑘𝑘B (
𝑇𝑇

ΘD
)

3 𝑥𝑥4𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 1)2  d𝜔𝜔 , (2.12) 

where 𝑘𝑘B is the Boltzmann constant, 𝑇𝑇  the absolute temperature, ΘD the Debye tempera-
ture of the solid, and 𝑥𝑥 = ℏ𝜔𝜔 𝑘𝑘B𝑇𝑇⁄ , with ℏ being the Planck constant divided by 2𝜋𝜋. The 
Debye temperature is [37] 

ΘD =
ℏ𝜔𝜔D
𝑘𝑘B 

=
ℏ𝑢𝑢ph

𝑘𝑘B 
√6𝜋𝜋2𝑁𝑁

𝑉𝑉
3  (2.13) 

for a crystal with 𝑁𝑁  oscillators (atoms) in the volume 𝑉𝑉 . Even though the Debye model 
for specific heat only provides a rough approximation, it is regularly used, as the influence 
of the uncertainties in the determination of the mean free path is much greater [42,46]. If 
there were infinite ideal crystals, with perfectly regular structures and harmonic interatomic 
forces, the mean free path and thus the thermal conductivity would be infinite [46]. In real 
solids, there are barriers that limit the mean free path and thus limit heat transport. There 



Heat conduction in solids 11

Since the carriers are the same, the theory of the mean free path and thus of the relaxation 
time is the same as for electrical conductivity. This can be expressed as [38,41]

𝜎𝜎el =
𝑛𝑛el
𝑚𝑚el

𝑒𝑒2 𝜏𝜏r,el , (2.18)

where 𝑒𝑒 is the elementary charge. If the thermal (Eq. (2.17)) and electrical conductivity
(Eq. (2.18)) are set in relation, one obtains with [38,41]

λel
𝜎𝜎el

=
𝜋𝜋2

3
(

𝑘𝑘B
𝑒𝑒

)
2
𝑇𝑇 = 𝐿𝐿 𝑇𝑇 (2.19)

the proportionality between thermal and electric conductivity of metals. This relationship
that Wiedemann and Franz have already found empirically is known as the Wiedemann-
Franz law. 𝜆𝜆el (𝜎𝜎el𝑇𝑇 )⁄ is a constant, only depending on two natural constants and is called 
the Lorentz number with [53]

𝐿𝐿 = 2.443 × 10−8 V2 K−2. (2.20)

For 𝑇𝑇 > ΘD, good agreement with experimental values is reported [37,41].

2.1.3 POLYMERS
Polymers have a comparatively low thermal conductivity. The aim of this section is to
assess the reasons for their low thermal conductivity and to identify opportunities for opti-
mization besides the use of thermally conductive fillers. There are numerous applications 
for which elevated thermal conductivity of polymers is interesting, independent of the use 
of fillers [54]. However, the potential is highly limited due to polymers’ fundamental struc-
ture. The different types and structures of polymer materials make it highly challenging to
apply universal theories, given the close structure-property relationships. To a certain ex-
tent however, we can refer back on the phonon theory presented in section 2.1.1 and discuss 
expected influences. Heat transport in polymers mainly happens along polymer chains
[55]. These individual chains can even have an outstanding thermal conductivity of several
hundred W m−1 K−1, exceeding that of many metals [54,56,57]. In polymer bulk materi-
als though, the thermal conductivity drops significantly. Wei et al. [54] therefore discuss 
the thermal conductivity of bulk materials separate to that of thin fibers with aligned chains 
in their recent review.

Many polymers have amorphous or semi-crystalline structures and therefore no regular 
lattice that could effectively contribute to thermal transfer. Lattice waves in the actual sense 
thus occur only in crystalline subregions. Nevertheless, the concept of phonons is also used 
for polymers, even though it is only to be understood symbolically. The fact that the indi-
vidual polymer chain itself has a very high thermal conductivity shows that it cannot be
the specific heat or the propagation speed limiting the thermal conductivity to this extent. 

10 Physical basics of heat conduction 

2.1.2 METALLIC SOLIDS 
In metallic solids, heat can also be transported via lattice waves as in the non-metallic solids 
mentioned previously, however the contribution from free electrons as carriers of heat is 
just as important. In the case of pure metals, the contribution of the electrons 𝜆𝜆el can sig-
nificantly exceed the contribution of the lattice waves 𝜆𝜆ph. Alloy thermal conductivity al-
ways depends on which elements are added and in what quantities, as well as the conduc-
tivity of the parent material. At ordinary and high temperatures, the contribution of the 
lattice becomes more important the worse the parent material conducts electricity [53]. 

We can model free electrons in metals as a free electron gas [36]. Again, we can adapt the 
general formulation from Eq. (2.10) [33,36,38,41,53] 

𝜆𝜆el =
1
3

𝐶𝐶V,el𝑢𝑢el𝑙𝑙el , (2.14) 

and consider the specific heat of the gas particles 𝐶𝐶V,el, their velocity 𝑢𝑢el, and the mean 
free path 𝑙𝑙el they can travel between two collisions. While the electrons are much faster 
than the phonons 𝑢𝑢el ≫ 𝑢𝑢ph, typically two or three orders of magnitude faster, the electron 
specific heat is smaller than the lattice contribution to specific heat [41]. Considering a 
Fermi gas, the specific heat of the electrons is [38,41] 

𝐶𝐶V,el =
𝜋𝜋2

2
𝑘𝑘B

2 𝑇𝑇
𝐸𝐸F

𝑛𝑛el , (2.15) 

where 𝑛𝑛el is the electron density and 𝐸𝐸F is the Fermi energy. If 

𝑢𝑢el = √
2𝐸𝐸F
𝑚𝑚el

 (2.16) 

with 𝑚𝑚el being the electron mass, is then set for the velocity of the electrons in a Fermi gas 
[38,41], the only unknown is again the mean free path 𝑙𝑙el. The same factors must be con-
sidered as with phonons. Collisions between electrons or collisions with phonons, as well 
as scattering at grain boundaries, imperfections, and defects limit the mean free path 
[43,53]. The contribution of the electrons to the thermal conductivity also depends on the 
temperature. Zhang et al. [33] describe a linear increase with temperature in the low tem-
perature range, a constant contribution in the intermediate range and a slight decrease with 
temperature at high absolute temperatures. If first Eq. (2.3) and then Eqs. (2.15) and (2.16) 
are put into Eq. (2.14), the thermal conductivity of an electron gas is obtained as a function 
of the relaxation time 𝜏𝜏r,el [41] 

𝜆𝜆el =
𝜋𝜋2

3
𝑘𝑘B

2

𝑚𝑚el
𝑛𝑛el𝑇𝑇 𝜏𝜏r,el . (2.17) 




