1 INTRODUCTION

1.1 BACKGROUND AND APPLICATIONS

Polymer materials are suitable for numerous applications in a variety of fields due to their
good processability, high durability, low price, and low weight. They are among the most
adaptable materials and are utilized for diverse tasks. However, there are limits to polymer
applications due to their crucial weak point: thermal conductivity.

With A = (0.1...0.5) W m~! K~ [1-4], this is far below that of metallic and ceramic
materials. In micro and power electronic systems, heat loss often needs to be transferred to
cooling systems or the environment across very small areas and with minimal temperature
drops. By using highly thermally conductive materials in the heat path, the system temper-
ature can be sustainably reduced and the service life of the system increased. To employ
polymer materials in these applications, they must be modified with highly thermally con-
ductive, granular fillers. Recent review articles report numerous use cases and require-
ments for thermally conductive filled polymers in electronic applications [2,4-6]. Figure
1.1 illustrates typical applications of thermally conductive filled polymers in electronics
and shows exemplary cross-sections through the material structure.
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Figure 1.1. Thermally conductive filled polymer applications in electronics.

Thermal interface materials: Thermal pad (a) and thermal grease (b), potting compound (c),
and insulated metal substrate (d). The inner illustrations show cross-sections of typical ma-
terial compositions in the corresponding applications.
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Thermal interface materials (TIMs), such as thermal pads (a) or thermal grease (b), are
used to optimize thermal transfer between two solids in a heat path. For example, between
a chip and a heat sink or, in the automotive sector, a battery module and a cooling unit.
Surface roughness and manufacturing tolerances of the two contact partners lead to poor
thermal contact and air inclusions. Soft and elastic thermal interface materials can displace
this air and thus optimize thermal transfer. A review of materials, established technologies,
applications, and recent advances is given in [5,7-11]. In part (c) of Figure 1.1 a potting
or encapsulant is shown. The main purpose of these materials is to protect the electronic
assembly from environmental impact, while guaranteeing good heat dissipation. Shen and
Feng [12] published an extensive review on the recent advances in encapsulants for light
emitting diodes (LEDs) in 2023.

As alast example, an insulated metal substrate (IMS) is presented in part (d) of Figure 1.1.
Electronic components with large power densities, such as LEDs, require a circuit board
with good heat spreading characteristics. An IMS is a layered structure consisting of an
aluminum or copper base plate, a thin dielectric intermediate layer, and a thin copper layer
into which the circuit paths can be inserted. While copper and aluminum provide outstand-
ing thermal conductivities, the dielectric layer in between is always the bottleneck for heat
dissipation. The basis is usually an epoxy polymer, modified with ceramic filler particles.
The layers are kept very thin, often less than 100 pm, to ensure that the thermal resistance
is as low as possible. The structure, requirements, applications, and current advances in
IMS are described in [13-15].

Thermally conductive fillers are not only used for polymers in the applications shown.
Other examples are injection-molded casings or heat sinks [16—18], or thermally conduc-
tive adhesives [19].

The use of thermally conductive polymers in all those applications has been established for
decades. Recent market research reports a large increase in market volume of thermally
conductive filled polymers and predicts further significant growth until the beginning of
the 2030s. This is primarily due to the increasing digitalization and simultaneous miniatur-
ization of electronic systems [6]. For thermal interface materials a compound annual
growth rate of 10.49 % — 21 % is predicted [20-23]. The market growth for pottings and
IMS is assumed at an annual rate of 3.9 % — 6.15 % [24-27]. For thermally conductive
compounds, an annual growth of 12.8 % is predicted [28].
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1.2 OBJECTIVE AND METHODS

The targeted and efficient development of advanced, high-performance polymer compo-
sites requires a profound understanding of the heat transport processes in the materials.
From afar, it seems to be obvious and is well known that thermal conductivity increases
with the concentration of highly thermally conductive fillers and that in principle, more
thermally conductive base materials enable higher effective thermal conductivities [29]. It
follows that it is crucial how effectively the filler particles can form a thermally conductive
network in the polymer matrix. This ability probably depends on many factors, such as
particle shape, size distribution and dispersion. The exemplary cross-sections in Figure 1.1
show the complexity and versatility of the material structures. For thermal interface mate-
rials, shown in part (a) and part (b), multi-scale filler blends with grain sizes in different
orders of magnitude are used to achieve the highest possible filler volume fractions. The
result is a highly complex microstructure with filler concentrations close to the maximum
packing density. Pottings (c) require good flowability for processing, i.e., a low viscosity,
thus the possible filler volume fraction is very limited. In these loose filler packings, ag-
glomeration and sedimentation phenomena are favored. With IMS, the complexity of the
microstructure increases because of the two contact surfaces of the metal layers above and
below the dielectric layer. Often only a few particle layers are between the contact surfaces.
This influences the overall packing structure.

Numerous recent review articles conclude that there are still many open questions and un-
explored relationships, especially with regard to the microscopic filler packing structure
[2,4,5,19,29,30]. The most concise conclusions were formulated by Burger et al. in 2016
[29],

“Nevertheless, it will be crucial to focus in future work on the structural and geo-
metrical aspects of the materials, which are essential parameters to increase ther-
mal conductivity.”

and Xu et al. in 2021 [5],

“For the critical thermal percolation |[...], existing knowledge is still very limited
and a universal picture about the threshold of the thermal percolation is still lack-
ing. Open questions remain on how to form a more effective heat conduction net-

1

work with less thermal resistances between fillers.’

There remain questions regarding whether there are pronounced percolation effects in ther-
mally conductive filled polymers and how the formation of thermally conductive paths in
the material can be favored [3,5,30]. Furthermore, Yang et al. [6] see a need to improve
and expand existing approaches for calculation and simulation, as these have so far ne-
glected many important parameters. In principle, however, detailed simulation and calcu-
lation approaches promise important insights into the microscopic heat transport processes
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and can help answer the open questions. With this as a basis, the present work is intended
to make a decisive contribution to the development of a detailed and comprehensive un-
derstanding of microscopic heat transport processes in filled polymers. The aim is a de-
tailed investigation and quantification of the effects of filler properties, geometric packing
structure, and interactions of different fillers in mixtures. The focus is on the effective ther-
mal conductivity of the particle-filled polymer and filled polymer to substrate (FPS) tran-
sitions, which are of exceptional importance in IMS, for example. Both phenomena are
investigated experimentally and using newly developed simulation methods.

Experimental techniques are mainly used to access macroscopic material properties. Since
the spatial resolution of simulative approaches is unlimited in principle, these techniques
allow analyses at the microscopic level which may then help explain macroscopic obser-
vations. Local heat transport processes inside the materials can be analyzed that are not
experimentally accessible. Experimental, and simulative investigations combine to allow
derivation of empirical theories on the impact of the geometric microstructure of filled
polymers on their heat transport properties. This is a common strategy used also in particle
physics, as the numerical reconstruction of processes can reach spatial and time scales for
which there are no experimental techniques yet available.

Chapter 2 begins with a discussion of the physical principles of heat conduction in solids
and composites. Thermal interfacial and thermal contact resistances are introduced and
discussed regarding their significance for filled polymers. A comprehensive summary of
the current knowledge and state of the art of thermally conductive filled polymer compo-
sites are presented. Chapter 3 provides an overview of the polymers and fillers used in the
experimental investigations. Additionally presented is an overview of the two main meas-
urement methods: the steady-state cylinder method and the newly developed micro ther-
mography method. Chapter 4 includes numerical and experimental studies on the impact
of filler properties and packing structures on the effective thermal conductivity of single
scale filled polymers. The newly developed microscale modeling method used for these
investigations is introduced at the beginning. Chapter 5 deals with the analysis of multi-
scale filled polymers with an emphasis on the interaction of different fillers at different
scales. Once again, both experimental and numerical studies are presented. Chapter 6 fo-
cuses on FPS transitions and the contact resistances that occur using new experimental and
simulative methods. Chapter 7 summarizes the findings and completes the comprehensive
picture of heat conduction in particle-filled polymers.



2 PHYSICAL BASICS OF HEAT CONDUCTION

This introductory chapter provides an overview of the physical mechanism of heat conduc-
tion, first in solids and later in composites. In addition, it explains the phenomenon of ther-
mal contact resistance and the resulting need for thermal interface materials. Thermal in-
terface materials are a major area of application for the investigations and findings of this
thesis. The chapter finishes with a brief overview of the current advances in the develop-
ment of thermally conductive polymer composites.

2.1 HEAT CONDUCTION IN SOLIDS

In physics, there are various mechanisms of heat transport including: heat conduction
through matter, heat transport through mass transport, and heat radiation. The basics of
heat conduction in matter, and particularly in solids, are discussed below. Heat conduction
is the transport of thermal energy through matter, mainly by diffusion of internal energy
when a driving temperature gradient is imposed. In 1822, Fourier formulated the propor-
tionality known today as Fourier’s law [31]

q=-\VT 2.1

between the conducted heat flux g (vector) and the applied temperature gradient VI'. Ac-
cording to the second law of thermodynamics, heat will always flow against the tempera-
ture gradient. The proportionality constant between heat flux and temperature gradient in
Fourier’s law is known as thermal conductivity. Thermal conductivity A (second-order ten-
sor in Eq. (2.1)) is an intrinsic thermophysical property of the heat conducting matter,
nowadays specified with

AN=Wm?!K"!. 22

In general, it is a temperature dependent quantity [32,33], and can also depend on applied
pressures, particularly for compressible matter [33]. The temperature dependence is often
ignored when small temperature differences are applied [32]. Furthermore, thermal con-
ductivity can be an anisotropic material property.

The theory of heat conduction in solids has been worked out in detail and is widely ac-
cepted. It is part of the basic repertoire of modern solid-state physics and is described in
detail in numerous textbooks [34-37]. As the theory is very complex and multifaceted,
there is additional specialized literature focusing solely on thermal conductivity [38—40].
Given here is a rough and simplified introduction to the topic for the purpose of assessing
the differences in thermal conductivities of the polymer matrices and the metallic and non-
metallic fillers and evaluating the heat transfer across the interface from matrix to particle.
Heat transfer through solids cannot be depicted using generally applicable models [41] and
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there is no possibility for an exact prediction of thermal conductivity [40]. Nevertheless, a
general impression and comprehension of the relationships can be acquired by discussing
different basic approaches and models. To begin, a short introduction is given using the
simple example of an ideal gas, before continuing with heat conduction in solids. A very
helpful derivation can be performed, based on the theory of ideal gas molecular motion,
following e.g., [33,35.,41].

All particles of the gas are handled as point masses, perform a disordered thermal motion,
and collide perfectly elastic with each other. The precondition for the validity of the fol-
lowing consideration is the existence of a sufficient number of individual particles for the
thermodynamic equilibrium. The average time between two collisions of a particle is 7,
and the average absolute velocity of all particles is u. 7, is sometimes referred to as relax-
ation time. The mean free path, the average distance a particle can travel freely, is [41]

l=ur, . 2.3)

To induce one-dimensional heat conduction in the z direction, a temperature difference
AT =T, — T, with T} > T, is applied at the distance Az = x5, — x;. On average, 1/3
of all particles move in = direction and contribute to the heat conduction. The position
Ty < x < g is considered. Particles that reach this position with positive velocity had
their last collision at position © — ur,, and particles that reach this position with negative
velocity had their last collision at position « + ur,. Let U(T") be the temperature-dependent
internal energy per particle. Then the particle with positive velocity brings the higher en-
ergy U(T(x —ur,)) and the particle with negative velocity brings the lower energy
U(T(x + ur,)) to position z. To calculate the net heat flux ¢, at the position x, the energies
transferred by individual particles must be added together and multiplied by the mean par-
ticle velocity u and the number of particles n per Volume V.

G, = ———u[U(T(a:er—r)) —U(T(z—urr))] . 24)

The sign determines the direction of the heat flow and the pre-factor 1/6 considers that on
average 1/3 of all particles move in the z direction. 1/2 each in the positive and negative

x direction. If 7, and thus [ are small, g,, can be written as in [35]

1n dUdAT 9
=———u——2ur, .
= v ardz " @3
%3—(1{ = (Y is the heat capacity per unit volume and d7"/dz the local temperature gradient

in x direction. After substitution and rearrangement, the equation becomes

1 dT

G = =3 Ovun . @.6)
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A comparison with Fourier’s law in one-dimensional notation

dT
Qe = 7/\5 ’ (2-7)

results in a thermal conductivity [33,35,41]

1
A= gcvu%,, . 2.8)

Finally, ur, can be replaced with Eq. (2.3), resulting in

1
A= 3 Cyul , 2.9)

as a general model for the thermal conductivity of an ideal gas, when considering the free
gas molecules as the carriers of heat.

In solids, different carriers contribute to heat conduction. The main carriers are lattice
waves and electrons. Less dominant carriers are magnetic excitations, spin waves, and ra-
diation [40,42,43]. In non-metallic solids without any free electrons, the lattice waves dom-
inate and are often the only noticed carriers [33,38,40,42,44]. In metallic solids, the elec-
tron contribution to heat conduction can predominate [33,40,42,44]. The total thermal con-
ductivity can be generally expressed as the sum

1
A= 3 Z Cy iuil; (2.10)

of all contributions, adapted from Eq. (2.9). The subscript ¢ stands for the respective carrier
(electrons, lattice waves, ...). C'y ; is the heat capacity per unit volume due to the carrier 4,

u,; is the velocity of the carrier, and /; its mean free path. At least velocity and mean free
path for the different carriers are not as clearly defined as for gases. Models must be found
to approximate them. In the following section, the thermal conductivity of non-metallic
solids, metallic solids, and the special case of polymers are discussed.

2.1.1 NON-METALLIC SOLIDS

In contrast to the atoms of a gas, the atoms of a solid do not move freely but have a fixed
equilibrium position. Many solids have a crystalline structure with a regular lattice [36].
The atoms perform thermal oscillations around their equilibrium position. As the temper-
ature rises, the internal energy and thus the vibrational energy of the solid increases. Since
the atoms are closely coupled, a temperature increase on one side of the solid and thus an
increase in vibrational energy is transported further in the body by lattice waves. Lattice
waves are primarily structure-borne sound waves that propagate through the solid body. In
1932, Frenkel introduced the term “phonons” for the energy quanta transported by these
waves [45]. To simplify, the phonons can be imagined as free gas particles. They move
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through the lattice, transporting a certain thermal energy at a specific velocity and over a
certain mean path. This idea supports the use of the Eq. (2.9) or (2.10) to describe the
lattice contribution A, to the overall thermal conductivity. The objective quantities of the
following discussion are therefore the heat capacity of the lattice waves, their propagation
velocity, and their mean free path. Comprehensive descriptions of the theoretical founda-
tions and models developed over the decades can be found in [38-41,43,46]. Brief sum-
maries of the key aspects are presented in [42,44,47]. Such a description is also provided
here for introductory purposes.

The lattice waves occur in a broad frequency spectrum. The wavelength of the occurring
vibration modes starts at atomic dimensions and extends to long waves comparable to the
external dimensions [42]. Of particular interest are the propagating modes. To consider the
specific contribution of the individual angular frequencies w, the basic Eqs. (2.9) or (2.10)
can be generalized to [42]

1 [*p
Aph = 3 / Cy ph @)yl (w) dw 2.11)
0

using the Debye theory [48] in good approximation. Strictly taken, a differentiation of the
polarization should also be taken into account [46]. For a general discussion of the rela-
tionships, however, Eq. (2.11) will suffice. Frequencies up to a cutoff value wp,, called
Debye frequency, are considered [37,41,42,46]. It is selected to include 3N modes, with
N being the number of atoms per unit volume. In the simplest form, u,,, is the velocity of
sound averaged over the transverse and longitudinal velocities [41]. Cy ;,(w) dw is the
specific heat contribution of the corresponding frequency interval with [42,49]

CV,ph(w) dw = gNk’B (

T 3 4
) ( Te dw , 2.12)

Op/) (er —1)2
where kg is the Boltzmann constant, 7" the absolute temperature, O the Debye tempera-

ture of the solid, and © = hw/kgT, with # being the Planck constant divided by 27. The
Debye temperature is [37]

hw hu h 3 6m2N
Op = oD — ZToh .
D kB k'B v (2.13)

for a crystal with N oscillators (atoms) in the volume V. Even though the Debye model

for specific heat only provides a rough approximation, it is regularly used, as the influence
of the uncertainties in the determination of the mean free path is much greater [42,46]. If
there were infinite ideal crystals, with perfectly regular structures and harmonic interatomic
forces, the mean free path and thus the thermal conductivity would be infinite [46]. In real
solids, there are barriers that limit the mean free path and thus limit heat transport. There
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is scattering caused by the collisions of phonons with impurities, crystal defects, grain
boundaries, and external boundaries [41]. The phonons are scattered from one mode into
another [46]. Anharmonicity in real crystal lattices additionally causes phonon-phonon col-
lisions. However phonon-phonon collisions do not necessarily contribute to limiting the
mean free path [36]. If a normal process (N-process) occurs, neither momentum nor energy
flow is affected. In 1929, Peierls [50] showed that, in addition to N-processes, there are
also Umklapp-processes (U-processes) that lead to an intrinsic resistance, since the direc-
tion of the energy flow changes after the phonon-phonon collision (German: umklappen,
English: to flip over). The lattice absorbs momentum [36]. As given in Eq. (2.11), the
limited mean free path is a function of the frequency and generally also of the temperature
lon(w, T) [36,38,40,46]. Thus, the specific heat C'y ;, and the mean free path [, are tem-
perature-dependent, resulting in a strongly temperature-dependent lattice component of
thermal conductivity A, (T').

The influence of temperature on the specific heat is particularly evident at very low tem-
peratures (T < ©p/3) in a T® dependency. At high temperatures (T' > Op,), the heat ca-
pacity is approximately constant. At low temperatures, the influence of boundary collisions
increases as the low frequencies become more dominant [44]. The mean free path can be
limited by the dimensions of the sample [36,42]. As the effects of low temperatures are
strongly pronounced, this range is in focus of certain specialized work [51,52]. In general,
the thermal conductivity in this range increases with temperature. The thermal conductivity
then reaches its maximum in the intermediate temperature range before decreasing again
due to the growing influence of defect and impurity scattering [38,41,43]. The mean free
path decreases stronger than the heat capacity increases. Further increasing temperatures
increase the probability of phonon-phonon collisions and cause the thermal conductivity
to drop further, approximately proportional to 7~ in the high temperature range [41,42].

The discussion thus far has been limited to crystalline solids with long-range order in struc-
ture. However, glasses and many polymers do not have long-range order. Section 2.1.3 is
explicitly dedicated to polymers. For the sake of completeness, however, a few general
connections will be made here.

Amorphous structures tend to have lower thermal conductivities than crystals [39,41]. The-
ories for predicting the thermal conductivity of amorphous solids emerged long after the
fundamental theories for crystalline solids [33,42]. However, it was established early that
the assumption of a constant, temperature-independent mean free path is sufficiently good,
at least in the range of ordinary (e.g., room temperature) and high temperatures [41,42].
The mean free path in amorphous solids is closely linked to the structural length units of
the solids [38,41]. In polymers, these are the building blocks of the polymer chains.
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2.1.2 METALLIC SOLIDS

In metallic solids, heat can also be transported via lattice waves as in the non-metallic solids
mentioned previously, however the contribution from free electrons as carriers of heat is
just as important. In the case of pure metals, the contribution of the electrons A can sig-
nificantly exceed the contribution of the lattice waves A,,. Alloy thermal conductivity al-
ways depends on which elements are added and in what quantities, as well as the conduc-
tivity of the parent material. At ordinary and high temperatures, the contribution of the
lattice becomes more important the worse the parent material conducts electricity [53].

We can model free electrons in metals as a free electron gas [36]. Again, we can adapt the
general formulation from Eq. (2.10) [33,36,38,41,53]
1

)\ =
el 3

Cy etetlel s (2.14)

and consider the specific heat of the gas particles Cy, ), their velocity u,, and the mean
free path [ they can travel between two collisions. While the electrons are much faster
than the phonons u, >> u,,, typically two or three orders of magnitude faster, the electron
specific heat is smaller than the lattice contribution to specific heat [41]. Considering a
Fermi gas, the specific heat of the electrons is [38,41]
72 k3T
Vel = ? EF Tl 5 (2.15)

where n, is the electron density and E¥y, is the Fermi energy. If

2

Ue) =
¢ m

(2.16)
el

with m, being the electron mass, is then set for the velocity of the electrons in a Fermi gas
[38,41], the only unknown is again the mean free path /. The same factors must be con-
sidered as with phonons. Collisions between electrons or collisions with phonons, as well
as scattering at grain boundaries, imperfections, and defects limit the mean free path
[43,53]. The contribution of the electrons to the thermal conductivity also depends on the
temperature. Zhang et al. [33] describe a linear increase with temperature in the low tem-
perature range, a constant contribution in the intermediate range and a slight decrease with
temperature at high absolute temperatures. If first Eq. (2.3) and then Egs. (2.15) and (2.16)
are put into Eq. (2.14), the thermal conductivity of an electron gas is obtained as a function
of the relaxation time 7, o [41]

72k}

Ael = 3 my ngT'T o - @17





