1.3 Darstellung von Allenyliden-Komplexen

Hierbei gibt es mehrere Zugangswege zu Allenyliden-Komplexen:

1.3.1 Umwandlung eines Carben- in einen Allenyliden-Liganden

Mit dieser Methode haben E. O. Fischer et al. 1976 die ersten Pentacarbonyl(3dimethylamino-3-phenylallenyliden)chrom- bzw. -wolfram-Komplexe durch Umsetzung von γ-Dimethylaminoalkenyl(ethoxy)carben-Komplexen mit einer Lewis-Säure und schwachen Basen durch 1,2-Eliminierung von EtOH synthetisiert (vgl. Abb. 1-3)^[21]. Mit Chrom als Zentralmetall konnten durch Variation des Aminosubstituenten noch weitere Allenylidenwerden^[26]. dargestellt Die Komplexe dieser Art als Edukte verwendeten γ -Dimethylaminoalkenyl(ethoxy)carben-Komplexe ließen sich durch Michael-Addition eines Amins an einen Alkinyl(alkoxy)carben-Komplex erhalten^[27].

M = Cr, W NRR' = NMe2, N(Me)Ph, N(Et)Ph, IndolinyI

Abb. 1-3: Darstellung von Amino(phenyl)allenyliden-Komplexen durch 1,2-Eliminierung von EtOH aus γ-Aminoalkenyl(ethoxy)carben-Komplexen.

1.3.2 Einführung einer C₃-Einheit in die Koordinationssphäre eines Metalls

Ein weiterer Zugang zu Allenyliden-Komplexen besteht in der Einführung einer geeigneten C_3 -Einheit. Nach dieser Methode gelang *P. Binger et al.* 1990 die Darstellung von 3,3-Diphenylallenyliden(trimethylphosphan)titanocen, dem ersten Titanallenyliden-Komplex. In dieser Reaktion wird 1,1-Dilithio-3,3-diphenylallen mit Titanocendichlorid und Trimethylphosphan umgesetzt^[28].

$$Cp_{2}TiCl_{2} + Li_{2}C=C=C \stackrel{Ph}{\leftarrow} + PMe_{3} \qquad Cp_{2}(Me_{3}P)Ti=C=C=C \stackrel{Ph}{\leftarrow} \\Ph \qquad -2 LiCl \qquad Ph$$

Abb. 1-4: Darstellung von 3,3-Diphenylallenyliden(trimethylphosphan)titanocen durch Austausch zweier Chloroliganden durch ein Allendianion.

Die heute gebräuchlichste Methode verwendet Alkine als C₃-Bausteine. *H. Berke* synthetisierte 1976 als erster auf diesem Wege einen Manganallenyliden-Komplex^[22]. In einer photochemischen Reaktion stellte er durch Abspaltung eines CO-Liganden aus Cymanthren, [CpMn(CO)₃], und anschließende Anlagerung von Methylpropiolat, HC=CCO₂Me, an die freie Koordinationsstelle den Alkinkomplex [Cp(CO)₂Mn(HC=CCO₂Me)] her. Dieser wurde durch Behandlung mit einem Überschuß von ^{*t*}BuLi in ein Alkinylmetallat überführt, das anschließend unter saurer Hydrolyse zum Manganallenyliden-Komplex [Cp(CO)₂Mn=C=C=C(^{*t*}Bu)₂] weiter reagierte (vgl. Abb. 1-5). In weiteren Reaktionen dieser Art konnten die Alkinylmetallate auch mit BnLi, ^{*c*}HexylLi, ^{*t*}BuLi und PhLi dargestellt und mit Phosgen zu Allenyliden-Komplexen umgesetzt werden^[29-33].

R = Bn, ^cHexyl, ^tBu, Ph

Abb. 1-5: Darstellung von Manganallenyliden-Komplexen.

1982 synthetisierte *J. P. Selegue* den kationischen Allenyliden-Komplex $[Cp(PMe_3)_2Ru=C=C=CPh_2][PF_6]$ aus $[Cp(PMe_3)_2RuCl]$ und 1,1-Diphenylpropargylalkohol in Gegenwart von NH₄[PF₆]. Hierfür war keine Deprotonierung des Alkins erforderlich.

Desoxygenierende Reagentien wurden ebenfalls nicht benötigt. Zunächst wurde von einer Abspaltung des Chlorids und Bildung eines Alkin-Komplexes ausgegangen. In einem 1,2-H-Shift isomerisierte er zum Vinyliden-Komplex. Anschließende spontane Dehydratisierung generierte den Allenyliden-Komplex^[34].

H. Fischer et al. stellten 1994 bisarylsubstituierte Chrom- bzw. Wolframallenyliden-Komplexe ausgehend von $[(CO)_5Cr(THF)]$ bzw. $[(CO)_5W(THF)]$ dar. Hierbei wurden 1,1-Bisarylpropargylalkohole dilithiiert und anschließend mit $[(CO)_5Cr(THF)]$ bzw. $[(CO)_5W(THF)]$ zu Alkinylmetallaten umgesetzt. Die anschließende Desoxygenierung mit Phosgen lieferte die entsprechenden Allenyliden-Komplexe (vgl. Abb. 1-6). In einigen Fällen konnte auf die Lithiierung und Desoxygenierung mit Phosgen verzichtet werden. Hierbei wurde, in Anlehnung an die von *J. P. Selegue* eingeführte Synthese, der Propargylalkohol direkt zugegeben. Die Wasserabspaltung verlief hier jedoch nur unvollständig, konnte jedoch durch Zugabe von DBU vervollständigt werden^[35].

$$(CO)_{5}M(THF) \xrightarrow{\text{LiC}\equiv CCR_{2}OLi} \left[(OC)_{5}M-C\equiv C-C \xrightarrow{R}_{-OLi} \right] \xrightarrow{\ominus} Li^{\oplus}$$

$$\xrightarrow{+COCl_{2}}_{-CO_{2}, -2 \text{ LiCl}} (OC)_{5}M=C=C=C \xrightarrow{R}_{R}$$

$$M = Cr, W$$

R = Ph, C₆H₄Me-*p*, C₆H₄OMe-*p*, C₆H₄NMe₂-*p*

Abb. 1-6: Darstellung von Chrom- und Wolframallenyliden-Komplexen, ausgehend von THF-Komplexen und Propargylalkoholen.

H. Werner et al. konnten 1993 bei der Synthese neutraler Rhodiumallenyliden-Komplexe sämtliche von *J. P. Selegue* postulierte Zwischenstufen isolieren. Als Primärprodukt der Reaktion von $[(P^iPr_3)_2RhCl]_n$ mit 1,1-Diphenylpropargylalkohol wurde zuerst ein Rhodium- π -Alkin-Komplex isoliert, welcher bei leichter Erwärmung in den Vinyliden-Komplex isomerisierte. Mittels Säurekatalyse konnte dieser in den Rhodiumallenyliden-Komplex überführt werden^[36].

Abb. 1-7: Darstellung von [(PⁱPr₃)₂ClRh=C=C=CPh₂] mit isolierbaren Zwischenstufen.

Mit 3,3,3-Tris(dimethylamino)prop-1-in an Stelle von Propargylalkoholen und deren Derivaten als C₃-Baustein gelang die Synthese Bis(heteroatom)-substituierter Komplexe. Für die abschließende Abstraktion einer Dimethylamino-Gruppe wurde $BF_3 \cdot OEt_2$ als Lewis-Säure verwendet^[37].

$$(CO)_{5}M(THF) + LiC \equiv CC(NMe_{2})_{3} \longrightarrow \left[(OC)_{5}M - C \equiv C - C(NMe_{2})_{3} \right]^{\ominus} Li^{\oplus}$$

$$\xrightarrow{\mathsf{BF}_3 \cdot \mathsf{OEt}_2} \mathsf{OC}_5\mathsf{M} = \mathsf{C} = \mathsf{C}_{\mathsf{NMe}_2}^{\mathsf{NMe}_2}$$

M = Cr, W

Abb. 1-8: Darstellung von Bis(dimethylamino)allenyliden-Komplexen mit 3,3,3-Tris(dimethylamino)prop-1-in.

Einige Jahre später konnten durch Verwendung von Propiolsäureamiden als C₃-Quelle auch Allenyliden-Komplexe mit zwei unterschiedlichen Heteroatom-Substituenten hergestellt werden. Die Reaktion von deprotoniertem Propiolsäureamid mit [(CO)₅Cr(THF)] bzw. [(CO)₅W(THF)] lieferte das entsprechende Alkinylmetallat, das anschließend mit Alkyl-Meerweinsalz, [R₃O][BF₄], unter Bildung von Allenyliden-Komplexen alkyliert werden konnte (vgl. Abb. 1-9). Diese Route eignet sich auch für die Darstellung von amino(aryl)-

substituierten Allenyliden-Komplexen bei Verwendung von deprotonierten Ethinyliminen als C_3 -Baustein^[38].

,

Abb. 1-9: Darstellung von Amino(alkoxy)- und Amino(aryl)allenyliden-Komplexen.

Erst kürzlich gelang die Synthese der ersten stabilen Palladium-Allenyliden-Komplexe. Hierzu wurden zuerst durch oxidative Addition von Halogenalkinen an nullwertiges Tetrakis(triphenylphosphan)palladium Palladium-Alkinyl-Komplexe hergestellt. Deren nachfolgende Behandlung mit Methyltriflat oder Alkylmeerweinsalzen führte zu kationischen Palladiumallenyliden-Komplexen^[39].

Abb.1-10: Darstellung der ersten stabilen Palladiumallenyliden-Komplexe.

1.3.3 Addition von Nukleophilen an höhere Metallacumulene

Durch Reaktion von nicht isolierbaren Butatrienyliden-Intermediaten mit Nukleophilen erhielten *M. I. Bruce et al.* 1996 Allenyliden-Komplexe. Durch Umsetzung von $[Cp(PPh_3)_2Ru(THF)][PF_6]$ mit Buta-1,4-diin und einem Nukleophil konnte so ein diphenylaminosubstituierter Rutheniumallenyliden-Komplex erhalten werden. Ein Butatrienyliden-Komplex wurde hierbei als Intermediat postuliert^[40].

$$\left[Cp(Ph_{3}P)_{2}Ru=C=C=CH_{2} \right]^{\oplus} \xrightarrow{+ HNPh_{2}} \left[Cp(Ph_{3}P)_{2}Ru=C=C=C \right]^{\oplus} Me^{\oplus} Me^$$

Abb. 1-11: Darstellung eines Allenyliden-Komplexes durch Umsetzung eines Butatrienyliden-Komplexes mit Diphenylamin.

Beim Versuch, aus $[N(CH_2CH_2PPh_2)_3]RuCl$ und 1,1-Diphenylpentadiinol in Gegenwart von Na[BPh₄] einen Pentatetraenyliden-Komplex zu synthetisieren, erhielten *P. H. Dixneuf et al.* schon 1991 einen kationischen Alkenyl(methoxy)allenyliden-Komplex. Hierbei addierte das als Lösungsmittel vorliegende Methanol an das C_γ-Atom des als Zwischenprodukt postulierten C₅-Cumulens^[41]. In den folgenden Jahren konnten über diese Syntheseroute

einige neue Alkenyl(alkoxy)- und Alkenyl(amino)allenyliden-Komplexe dargestellt werden^[24, 37, 42-44].

$$H-C \equiv C-C \equiv C-C \stackrel{Ph}{\leftarrow} Ph \qquad \underbrace{[Ru]CI}_{Na[BPh_{4}]} \left[\begin{array}{c} \textcircled{} \oplus \\ [Ru] \equiv C = C = C = C = C \stackrel{Ph}{\leftarrow} \\ Ph \end{array} \right] \stackrel{\bigcirc}{BPh_{4}} \\ \underbrace{MeOH}_{C=C \stackrel{}{\leftarrow} Ph}_{C=C \stackrel{}{\leftarrow} Ph}_{C=C \stackrel{}{\leftarrow} Ph}_{BPh_{4}} \\ \end{array}$$

 $[Ru] = [N(CH_2CH_2PPh_2)_3]Ru$

Abb. 1-12: Darstellung eines Alkenyl(alkoxy)allenyliden-Komplexes durch Reaktion eines Pentatetraenyliden-Komplexes mit einem Nukleophil.

1.4 Reaktivität von Allenyliden-Komplexen

1.4.1 Allgemeines

Zur Erklärung der Reaktivität von Allenyliden-Komplexen müssen die mesomeren Grenzformen A - D berücksichtigt werden.

Abb. 1-13: Mesomere Grenzformen von Allenyliden-Komplexen.

Der unpolaren Grenzform A stehen die polaren Resonanzstrukturen $\mathbf{B} - \mathbf{D}$ gegenüber. Vergleicht man nun die "reine" Cumulenstruktur A mit den Grenzformen $\mathbf{B} - \mathbf{D}$, so wird deutlich, dass mit zunehmender elektronischer Wechselwirkung der terminalen Substituenten mit dem Zentralmetall die Bedeutung von **C** und **D** erhöht wird. Dies macht sich bei stark elektronenschiebenden Substituenten am C_{γ}-Atom unter anderem in der Abweichung der Länge der beiden C-C-Bindungen von den Erwartungswerten für C=C-Bindungen bemerkbar^[35]. Der Erwartungswert liegt für eine reine Allen-Bindungslänge C=C=C bei 1.307 Å, für C(sp³)-C(sp)-Bindungslänge bei 1.466 Å und für eine C(sp)=C(sp)-Bindungslänge bei 1.192 Å^[45].

MO-Rechnungen zeigen, dass für alle berechneten Systeme das HOMO hauptsächlich im Metall-Ligand-Fragment und dem C_{β}-Atom zentriert ist. Zudem liegt die Symmetrie-Ebene des Orbitals koplanar mit der Ebene, welche von der Allenylidenkette und den Substituenten aufgespannt wird. Elektrophile sollten also in dieser Ebene am C_{β}-Atom angreifen.

Im Gegensatz dazu ist das LUMO an C_{α} und C_{γ} lokalisiert und zwar senkrecht zur Allenyliden-Ebene (vgl. Abb. 1-14). Ein orbitalkontrollierter nukleophiler Angriff sollte somit an C_{α} oder C_{γ} erfolgen. Die Reaktivität von Allenyliden-Komplexen wird auch durch die Substituenten am C_{γ} -Atom beeinflusst. So nimmt die Reaktivität gegenüber Nukleophilen mit zunehmend e⁻-donierenden Resten am C_{γ} , wie z.B. Aminen, ab, was durch die energetische Anhebung des LUMOs erklärt werden kann^[46, 47].

Abb. 1-14: Graphische Darstellung von HOMO (links) und LUMO (rechts) von [(CO)₅Cr=C=C=C(NMe₂)OMe].