
Chapter 1

Introduction

Most of the properties of simple metals can be accounted for by models where the

conduction electrons are described by effectively free fermions, i.e. are described by a

kinetic energy, an effective mass, and Pauli’s principle. In some systems however, the

Coulomb repulsion between electrons and the effects of exchange-correlations cannot

be ignored. Once the interaction energy between electrons becomes comparable to

their kinetic energy, the notion of strongly correlated electron systems (see [1] for an

overview) has been established. Such systems exhibit a diversity of exotic and interesting

properties, e.g. high-temperature superconductivity [2], heavy fermion behavior [3], and

quantum magnetism [4].

Among the simplest models to describe itinerant electrons with strong correlations

mediated via Coulomb repulsion is the Hubbard model
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This Hamiltonian describes a hopping of electrons from one lattice site to another

through creation c†i ,σ and annihilation operators cj,σ with an additional Coulomb repulsion
U between two electrons on the same site. At half filling and in the strong coupling

limit U >> t, the Hubbard model can be reduced to the Heisenberg model
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with J = t2/U. While the kinetic and potential energies in real space are not of similar

magnitude in the Heisenberg limit, this phenomenon still pertains to the spin space.

In fact the exchange energy J
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)
is of identical magnitude as the Ising

energy JΔSzi S
z
j for the isotropic point Δ = 1. These play a role similar to that of the
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kinetic and potential energy, which becomes particularly evident in one dimension by

a mapping to spinless fermions via the Jordan Wigner transformation S−j = e−iφjaj ,

S+j = e
iφja

†
j , S

z
j = a

†
j aj − 1

2
= nj − 1

2
. The phase φj = π

∑j−1
q=1 nj counts the number of

spinless fermions left of lattice site j to fulfill fermion commutation relations [5].
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In this picture, the coupling anisotropy Δ sets the ratio of kinetic to potential

energy similar to the ratio U/t, and the the application of a magnetic field (Zeeman

term) translates into the notion of a chemical potential, regulating the filling of the

conduction band. Furthermore, the single-ion anisotropy D was introduced in eqn.

(1.2) as a relevant model parameter for this thesis, owing to orbital quenching and

spin-orbit coupling for spin S ≥1 materials.

Despite its simplicity, the Heisenberg Hamiltonian is still a challenging subject for

theory. Up to present times only static properties of the spin S=1/2 chain have been

given exactly by Bethe in 1931 [6, 7] while it still proves to be challenging to calculate

matrix elements of dynamic correlation functions for this particular system. Next to the

well established Bethe ansatz [6] and field theoretical approaches (e.g. bosonization,

conformal field theory, non-linear σ-model ([8–12]), numerical methods such as exact

diagonalization (ED), lanczos diagonalization ([13, 14]), density matrix renormalization

group (DMRG, [15] and ref. therein) and quantum Monte Carlo (QMC, [16] and ref.

therein) play a key role in evaluating static and dynamic properties of quantum spin

models.

The physics of the Heisenberg model, its critical behavior, and its ground state phases

are influenced by the interplay of intrinsic properties, such as dimensionality, spin

magnitude (i.e. quantum fluctuations), or magnetic frustration, and by extrinsic

influences, such as magneto-elastic coupling or disorder. In particular the interplay

of quantum fluctuations and reduced dimensions leads to many unusual effects.

Focusing on one dimension, the absence of long range order has been established by

Bethe’s exact solution of the eigenvalue problem [6] for the spin S=1/2 chain. Field

theoretical methods resulted in a critical exponent η = 1 of the algebraically decaying

spin-spin correlation function 〈SiSj〉 ∝ (−1)|i−j |(log |i − j |)1/2/|i − j |η (extensive review
see [17]) and its low-energy properties are well described by those of a Luttinger

liquid (LL) [9, 18], i.e. a description of bosonic collective excitations (spinons) with

only two defining parameters: the spinon velocity v of the linear dispersion and the

renormalized Luttinger parameter K which establishes interactions and governs the
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Figure 1.1: Illustration of the transition from a spin chain over a two-leg spin ladder

to a two-dimensional plane. Empty, respectively closed circles stand for spins pointing

up/down.

power-law decay of most correlation functions. With static properties well under-

stood [7], dynamic and spin transport properties are however still subjects of discussions.

After establishing quantum criticality for the spin-1/2 chain, it came as a surprise

when Haldane, employing the non-linear O(3) σ-model (NLσM) in a semi-classical

large-spin approximation, suggested that only the half-integer spin chains are critical

whereas all integer spin-chains have an energy gap Δ in the excitation spectrum

[19]. As consequence, all thermodynamic properties activate exponentially and the

spin-spin correlation function decays as 〈SiSj〉 ∝ e−|i−j |/ξ with a finite correlation
length ξ ∝ 1/Δ1.

The existence of a finite correlation length in the integer spin chains categorizes

them as spin liquids, i.e. spin systems with no long range order and only short-range

correlations. Another class of spin liquids relevant for my thesis is found in form of

spin ladders [23], i.e. by increasing the dimensionality through linking chains into

a two-dimensional alignment (see Fig. 1.1 for illustration). Such ladder systems

alternate between spin liquid behaviour for even and critical behavior for odd number

1Note, that the ground state of the spin S=1 chain was found to have a hidden topological string-order

[20–22].
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of legs. A particularly interesting aspect of spin liquids in dimensions d ≥ 2 is
their field driven quantum phase transition into an ordered phase by condensing

of the lowest magnon excitations (Bose-Einstein condensate). In the vicinity of

the critical eld Bc , a universal scaling of the critical temperature Tc as function of

magnetic field strength was predicted Tc ∝ (B − Bc)α with α = 3/2 [24]. For
d = 1, a breaking of the continuous XY-symmetry is permitted by Mermin-Wagner’s

theorem, therefore a critical temperature does not exist. However, in an already

magnetized state there remains no conceptual difference in the low energy properties

between spin ladders, integer and half-integer spin chains [25, 26]. Interestingly, this

crossover into a Luttinger liquid is driven by increasing the magnetic field. For the spin

S=1/2 chain it is observed upon decreasing the magnetic field through its critical value.

In my thesis, the main points of interest are (i) numerical methods and (ii) static

and dynamic properties of spin systems in reduced dimensionality and in the vicinity

of quantum critical points. The thesis is structured threefold. In the first part, the

employed QMC method will be introduced. In a small introduction of the most common

numerical methods, I will motivate our choice as QMC proves to be a very powerful

and flexible tool, tailored for evaluation of large systems in any dimension down to

essentially zero temperature. Its adjacent discussion features a small introduction to

quantum Monte Carlo and systematically explains its implementation for the particular

case of the stochastic series expansion (SSE). The latter provides a detailed discussion

about measuring longitudinal and transverse imaginary time observables which, to the

best of my knowledge, is still insufficiently documented in literature. As a consequence

of results in imaginary time, two common analytic continuation algorithms will be

introduced in section 2.5. Such continuations from imaginary to real axis are required

to perform comparisons with experiments such as inelastic neutron scattering (INS) or

nuclear magnetic resonance (NMR). After the methodical aspect of this thesis, results

will be presented in chapter 3 and 4. While the first part of my results (chapter 3)

features exclusively static quantities of low-dimensional spin systems, the second part

(chapter 4) focuses on dynamic properties of the spin S=1/2 and S=1 chain with a

short introduction to spin transport of the spin S=1/2 system.

In further detail, chapter 3 is divided threefold: the first section 3.1 deals with

thermodynamic properties of quantum spin S chains with S ∈ {1/2, 1, 3/2, 2, 5/2}. By
means of the static susceptibility we contrast the quantum spin model with a classical

S → ∞ limit by Fisher [27]. After a finite size analysis for all spin magnitudes in a
temperature range 0.01 ≤ T/J ≤ 100, we find that even for the largest evaluated spin
S=5/2 there are considerable differences in terms of the maximum position and the
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low temperature behavior compared to the S → ∞ limit. Additionally, Padé-fits are
given for the whole evaluated temperature region to allow for an analytical access to

our numerical data. We evaluate our fit quality through a comparison to high-accuracy

Bethe-ansatz data in the case of spin S=1/2 and suggest improvements of commonly

used fit formulas available in literature for all evaluated spin magnitudes.

In section 3.2, we analyze thermodynamic properties of a spin S=1 two-leg ladder

as function of rung/leg coupling and single-ion anisotropy. Such a ladder system is

unique in many regards: first of all we know that even-leg spin S=1/2 ladders show

spin liquid behavior and naturally we expect the same for a spin S=1 ladder system.

In the coupling limits of zero inter-chain and zero intra-chain coupling, we find two

uncoupled Haldane chains, respectively uncoupled dimers – both systems which display

a strong spin gap. In the region of intermediate coupling however, Todo et al. showed

a weakening of the gap by nearly two orders of magnitude. At this point we utilize

QMC in the thermodynamic limit to show that for intermediate coupling ratios and

an additional small easy-plane anisotropy, the system seems to become gapless. This

results in finite susceptibilities even at lowest elevated temperatures T/J = 0.001 and

the low-temperature magnetization profile loses the typical step-structure of a spin

ladder. Additionally we compare our results to susceptibility and magnetization mea-

surements of Mennerich et al. [28] on a Ni(II) based spin S=1 ladder material in order

to elaborate on its coupling constants. Ultimately, all comparisons point at weakly cou-

pled dimers for this system with a small easy-plane anisotropy – too small to lift the gap.

In the last section of chapter 3, we study an essentially zero-dimensional [3 × 3]-
grid system with large spin S=5/2, motivated by susceptibility and magnetization

measurements on a molecular magnet based on Mn(II) ions [29]. Such molecular

magnet with such a large effective magnetic moment may have many technically

interesting applications, such as e.g. storage device for conventional bits due to the

large relaxation time of the magnetization (one month at 2K) or as basis for quantum

computing if the tunnel barrier of the Néel vector is not too large. Interestingly, the

system exceeds the computational limits of exact diagonalization despite its small size,

which means exact theoretical results are largely absent. Among the observables we

compute are susceptibility, magnetization and (staggered) static structure factor as

function of temperature, center spin coupling, magnetic field and single-ion anisotropy.

As far as the temperature and center-spin coupling variation is concerned, we find

very low impact on the form of the susceptibility. High- as well as low temperatures

show solely Curie behavior with very marginal variation in an intermediate temperature

region 1 ≤ T/J ≤ 10. Upon variation of the single- ion anisotropy however, strong
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effects occur. For a small easy-plane anisotropy, the system aligns immediately

in-plane, leading to an Ising-like total spin S=1/2 with clear fingerprints in the

magnetization steps and (staggered) structure factor. Likewise we find an immediate

aligning along the z-axis with the application of a small easy-axis anisotropy, leading

to a total spin S=5/2 with clear indications given in the magnetization profile and

(staggered) structure factor. Finally, with an extensive parameter study, we provide a

very accurate description for the whole available temperature region 1K ≤ T ≤ 300K
to the experimental susceptibility of the Mn-[3 × 3] grid and our magnetization profile
qualitatively reflects magneto-torque measurements performed by O. Waldmann [30].

Chapter 4 is also divided threefold. In section 4.1 we study dynamic properties of

the Heisenberg spin S=1/2 chain as function of temperature and magnetic field – a

parameter-combination where theoretical results are lacking. Among our observables

are longitudinal as well as the transverse structure factor for the Luttinger liquid

regime 0 ≤ B < Bc up to fields beyond the saturation field. We detail the field and

temperature dependence of the incommensurate fermi vectors and clarify finite tem-

perature q-dependence of the system at full polarization by a two-magnon excitation

model. Additionally we analyze the 1/T1-relaxation rate and successfully compare it

to experiments by H. Kühne et al. [31]. Their experiments and our numerical results

strongly reflect the condensation of magnons upon decreasing the field through the

saturation field Bc in a diverging relaxation rate for T → 0. Interestingly, the maximum
of the 1/T1-relaxation rate at finite temperatures is found below the critical field for

both, theory and experiment.

The same critical behavior of a level-crossing magnon dispersion has mostly been

looked at upon increasing the magnetic field for gapped systems such as Haldane chain

or spin ladder materials. With that in mind, we look at the dynamics of the Haldane

system as function of temperature and magnetic field in section 4.2, which, in the

case of B = 0, is fundamentally different from the dynamics of the spin S=1/2 chain.

The Haldane dynamics are dominated by a sharp, gapped magnon dispersion while the

spin S=1/2 system is known to consist of spinons spanning an energy continuum.

However, upon increasing the field for the Haldane system, the spin gap closes and the

system can be described by a Luttinger liquid again, resembling the dynamic properties

of the spin S=1/2 system discussed earlier. In that regard, we look at the evolution

of the transverse dynamic structure factor as function of field and temperature and

discuss it for the gapped 0 ≤ B ≤ Bc1 and the LL regime Bc1 ≤ B ≤ Bc2. Furthermore
we extract the relaxation rate and show its exponential increase by populating the gap

through heating, respectively upon approaching the first critical field at a fixed finite

temperature. Both, section 4.1 as well as 4.2, close with a discussion of sum rules

as a consistency check for our analytic continuations from the imaginary to the real axis.
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This leads to section 4.3 (as follow-up to dynamic properties of the spins S=1/2 Heisen-

berg chain), dealing with transport properties of the isotropic spin S=1/2 Heisenberg

chain, which has been under intense scrutiny since one decade without coherent results

for the nature of the transport at the SU(2) symmetric point, e.g. ballistic or diffusive.

Unfortunately our analytical continuations with the commonly assumed error of 10-20%

are not sufficiently accurate to enter this discussion with reasonable arguments on the

real axis. Very recently however, spin diffusion has been conjectured to governs the

low-frequency spectrum of the regular conductivity which provides for an approximate

expression of the Fourier transform of the retarded spin susceptibility [32]. This expres-

sion can be transformed to imaginary time, where our QMC results are only subject to

statistical errors. With considerable numerical effort we show that our data is support-

ing a diffusive channel for the XXZ-model, which opens up the intriguing possibility of

a finite temperature dynamical spin conductivity of the Heisenberg model which com-

prises both, a finite Drude weight and a regular part with a large mean free path at low

temperatures.


