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Meta-heuristic Optimization of

Constrained Combinatorial Problems

2.1 Introduction

This chapter introduces a novel optimization approach for discrete multi-ob-

jective optimization problems. This efficient optimization is essential for an

effective Design Space Exploration (DSE) in the automotive domain. In par-

ticular, the optimization problems in the automotive domain are characterized

by a huge search space due to the problem size and complexity as well as by

stringent constraints due to several domain-specific requirements. In the follow-

ing, the proposed efficient optimization is introduced and compared on a set of

test cases from different domains before it is applied successfully to the DSE of

automotive networks in Chapter 3.

Meta-heuristic algorithms are successfully applied to many complex optimiza-

tion problems. In particular, some of these meta-heuristic optimization algo-

rithms like Evolutionary Algorithms (EAs) perform very well on multi-objective

problems. A major shortcoming of these meta-heuristic optimization algorithms

is the missing of capability of innately handling arbitrary constraints. Though

several generic and specific methods were researched to overcome this drawback,

these methods tend to perform badly in case of a general constrained combina-

torial problem where the search space is discrete and linearly constrained. Such
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a constrained combinatorial problem is defined as follows:



2. Meta-heuristic Optimization of Constrained Combinatorial Problems

Definition 2.1 (Constrained Combinatorial Problem)

minimize f(x)

subject to:

Ax ≤ b with x ∈ {0, 1}n, A ∈ Z
m,n, b ∈ Z

m

The objective function f might be multi-dimensional and non-linear. In single-

objective optimization, the feasible set of solutions is totally ordered, whereas in

multi-objective optimization problems, the feasible set is only partially ordered

and, thus, there is generally not only one global optimum, but a set of Pareto-

optimal solutions. A Pareto-optimal solution is better in at least one objective

when compared to any other feasible solution. The search space X = {0, 1}n
is restricted to binary values, but allows integer values by a binary encoding.

The feasible search space Xf ⊆ X is restricted by a set of constraints which are

subsumed in the stated matrix inequation Ax ≤ b. Thus, the constraints have

to be linear or linearizable.

In case of a relatively small feasible search space, common constraint-handling

methods like penalty functions or local repair algorithms are more focused on

the search for feasible solutions than on the optimization of the objectives. Fig-

ure 2.1 illustrates the shortcomings of a variation of a feasible solution in a

constrained search space where the resulting solutions might become infeasible.

As a result, only a slow convergence towards the optimal solutions is reached

typically. In some cases it might even happen that the meta-heuristic opti-

mization algorithm is not able to find even a single feasible solution. On the

other hand, using exact approaches like Integer Linear Programming (ILP) is

prohibited by the condition that the objective function is multi-dimensional and

non-linear.

To overcome the drawbacks of known optimization methods for the con-

strained combinatorial problem, a novel approach is proposed in this chapter.

This hybrid approach combines the benefits of ILP and meta-heuristic opti-

mization methods, particularly EAs. Since the constraints in Definition 2.1

are restricted to binary variables, a backtracking-based ILP solver might be

used to find feasible solutions. This so-called Pseudo-Boolean (PB) solver is in-

corporated into the meta-heuristic optimization process to enable a constraint
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handling and preserve the feasibility of the solutions.
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Figure 2.1: Illustration of a common operator that varies a solution xa in a con-

strained search space. The circles correspond to feasible solutions.

The variation of solution xa may result in infeasible solutions.

Two basically different approaches are proposed that allow integrating a PB

solver in the optimization process. First, a decoding approach is presented where

the meta-heuristic is used to vary the branching strategy of a PB solver instead

of varying the solutions directly [LGHT07]. As a result, the PB solver is used

with the branching strategy to obtain feasible solutions. The second approach

presents feasibility-preserving operators that are used by the optimization algo-

rithm to vary the solutions inside the feasible search space [LGHT08b, LGT08].

For each operator an individual scheme for the branching strategy for PB solver

is proposed. In case of an unconstrained problem, these operators degrade to

the known bitwise operators. In particular, this work presents neighborhood,

mutation, and crossover operators.

Several test cases give evidence of the benefits of the feasibility-preserving

optimization approaches. A random set of single-objective test cases is selected

from the PB Evaluation [MR09]. These test cases allow a fair comparison of

the feasibility-preserving techniques with a penalty approach based on the con-

vergence towards the optimal objective value. Additionally, two-dimensional

optimization problems show the applicability in the multi-objective domain.

An introduction of the meta-heuristic optimization of the constrained combi-

natorial problem is given as follows:
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• An extensive presentation of related work. (cf. Section 2.2)

• A detailed introduction on the PB problem. (cf. Section 2.3)

In summary, this chapter provides the following contributions to the con-

strained combinatorial problem as defined in Definition 2.1:

• A decoding scheme based on a PB solver that ensures the feasibility of

solutions. (cf. Section 2.4)

• An operator scheme based on a PB solver that preserves the feasibility of

solutions. (cf. Section 2.5)

• A meaningful set of test cases that gives evidence of the superiority of

the proposed methods compared to known constraint handling methods

in meta-heuristic optimization. (cf. Section 2.6)

2.2 Related Work

This section discusses existing work related to meta-heuristic optimization and

constraint handling methods known from literature. Finally, known hybrid opti-

mization algorithms that combine exact and heuristic algorithms are discussed.

2.2.1 Meta-heuristic Optimization

Meta-heuristic optimization methods are commonly used for complex prob-

lems where common optimization techniques like Linear Programming (LP),

Quadratic Programming (QP), Geometric Programming (GP), etc. are not ap-

plicable due to their restrictive expressiveness. This is often the case if the

problem has multiple non-linear objectives or constraints as well as a complex

underlying problem representation.

The domain of meta-heuristic optimization comprises methods such as Evolu-

tionary Algorithm (EA) approaches [Bäc96], Simulated Annealing (SA) [KGV83,

Čer85], and Particle Swarm Optimization (PSO) [KE95]. The abovementioned

meta-heuristic optimization algorithms are inspired by nature and, therefore,

also embraced by the term Evolutionary Computation (EC) [Fog95].
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An EA is a population-based optimization algorithm inspired by biological

evolution. The first EAs were developed independently by different research

groups around the world in the 1960s. Lawrence J. Fogel coined the term Evo-

lutionary Programming in 1962 [Fog62, FOW66] for his evolutionary approach

to solve prediction models. Also in 1962, John H. Holland initiated the Genetic

Algorithm (GA) approaches [Hol62] resulting in a pioneering book published in

1975 [Hol75]. His work was motivated by the development of robust adaptive

systems. The work on the Evolution Strategy (ES) started in the 1960s and

was further developed in the 1970s by Ingo Rechenberg and Hans-Paul Schwe-

fel [Rec71, BS02]. The ES approaches were used to solve continuous parameter

optimization problems. All these approaches share the common idea of using

reproduction and natural selection. Therefore, these approaches are commonly

embraced by the term EA. Numerous books have been published on the EA

topic such as [Dav91, Mic96, BNKF98].

The main procedure of an EA is based on the reproduction and selection that

are performed alternately in an iterative process to optimize a given objective.

The reproduction creates new individuals from the current population using the

mutation and crossover operators. These crossover and mutation operators are

problem specific. There exist numerous general-purpose crossover and mutation

operators for real, integer, binary values and also for problem specific data-

structures. The task of the selection is to remove the worst individuals to

ensure a convergence of the algorithm towards the optimal solutions. For single-

objective optimization this might be a pure elitism selection that always removes

the worst individuals or a probabilistic method like the roulette wheel selection.

In recent years, huge efforts were made to adapt the selection to multi-

objective problems. The best known and commonly used algorithms for multi-

objective selection are the Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[ZT99, ZLT02], the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

[SD94, DAPM00], and the Indicator Based Evolutionary Algorithm (IBEA)

[ZK04].

Simulated Annealing

SA is an optimization algorithm inspired by the annealing process in metal-

lurgy. It is a further development of the Metropolis algorithm [MRR+53] and

was developed independently by Kirkpatrick et al. in 1983 [KGV83] and Černỳ

in 1985 [Čer85].
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The algorithm varies a single solution by a neighborhood operator. The com-

mon neighborhood operator for binary problems is a bit flip or the sampling

from a normal distribution for real-valued problems. However, also problem-

specific neighbor operators were studied and successfully applied to arbitrary

problems. The common SA improves a single solution iteratively. A new solu-

tion is either accepted or rejected based on a probability value that is calculated

using a continuously decreasing temperature function.

The general SA is a single-objective optimization algorithm. However, also

multi-objective variants were studied [TK07, BSMD08]. A further extension

of the SA is the Tabu Search (TS) [Glo89, Glo90] where each found solution

is excluded from the search space to enable a faster convergence towards the

optimal solution.

Particle Swarm Optimization

PSO is an optimization algorithm based on swarm intelligence using social-

psychological principles. It was first published in 1995 by James Kennedy and

Russell C. Eberhart [KE95].

The main procedure is based on particles that are moving in the search space.

As a result, the algorithm mainly targets continuous problems. A swarm consists

of multiple particles that change their position on each iteration. One single

particle is attracted by its local best position and the global best particle. Here,

the quality of an particle depends on the objective function. There exist several

variations including extensions for multi-objective optimization [CCPL04].

Miscellaneous methods

In addition to the abovementioned meta-heuristic optimization algorithms

there exist other approaches which are outlined in the following. Differen-

tial Evolution (DE) [SP95] is an optimization approach tailored for contin-

uous search spaces and shares several similarities with PSOs. Ant Colony

Optimization (ACO) [DMC96] is restricted to optimize paths through graphs

inspired by ant behavior. Meta-heuristic algorithms like Artificial Immune

Systems (AIS) [FPAC94], Harmony Search (HS) [GKL01], and many others

are tailored for specific optimization problems. Moreover, there exist various

hybrid combinations of the discussed algorithms.

12


