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2 Field-oriented control

In drive applications a DC machine has the great advantage that it has separate
field and armature windings. Thus both of its most important states, namely
flux and torque, can be controlled independently of each other by the field
winding current and by the armature current, respectively. The commutator
acting as a mechanical converter makes sure that the current distribution of the
rotor is always positioned properly, so that the rotor current and the main flux
are always in quadrature to each other. Asynchronous machines, on the other
hand, which offer great advantages because of their maintenance free operation,
have only one active winding, the stator winding. The rotor winding is either
short circuited (squirrel-cage motor) or connected with variable resistors (slip
ring rotor). Consequently, both flux and torque in the machine have to be raised
via the stator windings. Splitting the control structure in a simple way into
flux and torque control is not possible. However, for high drive performance,
both states must be controlled independently of each other [57].

A remedy for solving this problem is the use of the so-called field-oriented
control [79], which can be described with the help of space vector representa-
tion [70]. The basic idea behind this representation is that the three-phase
current system can be represented by a three-axis coordinate system as shown
in figure 2.1(a). Unfortunately, the three axes a, b and c are not linearly inde-
pendent of each other, a fact that complicates a mathematical description of
the actions in a three-phase system. Hence, an alternative two-phase system
with two axes linearly independent of each other is constructed. Figure 2.1(b)
shows this equivalent system. To obtain an easy representation of the two
phase quantities, usually a complex coordinate system is selected. Thus, the
corresponding quantities from one coordinate system, e. g. the stator voltage
quantities, can be transformed into another coordinate system with the help of
the transformation equations (2.1) to (2.4).

us = 2
3

`
usa + a · usb + a2 · usc

´
in which a = ej 2π

3 (2.1)

u0 = 1
3

(usa + usb + usc) (2.2)

usα = Re{us} = 2
3

`
usa − 1

2
usb − 1

2
usc

´
(2.3)
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usβ = Im{us} = 1√
3

(usb − usc) (2.4)
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Figure 2.1: Three-phase system and alternative two-phase system

The idea of field-oriented control is based on the fact that the three stator
currents isa, isb and isc in the three stator windings are first transformed into
a complex state space vector is. Therefore, a transformation analog to (2.1) is
used for the stator currents. Then, an induction machine can be described in
an arbitrary reference coordinate system, rotating with ωk, with the following
equations [70,71]:

us = rs · is +
dψs

dτ
+ jωkψs (2.5)

0 = rr · ir +
dψr

dτ
+ j(ωk − ω)ψr (2.6)

ψs = ls · is + lh · ir (2.7)

ψr = lr · ir + lh · is (2.8)

For current control, as it is implemented in the internal loop of a cascade con-
trol structure, it is an adequate solution to choose is und ψr as state variables.
After reformulating according to [56, 57], the following differential equations
can be obtained:

is + τσ
′ dis
dτ

= −jωkτσ
′is +

kr

rσ

„
1

τr
− jω

«
ψr +

1

rσ
us (2.9)

ψr + τr
dψr

dτ
= −j(ωk − ω)τrψr + lh · is (2.10)

in which τs = ls
rs
, τr = lr

rr
, σ = 1 − lh

2

lslr
, ls

′ = σls, lr
′ = σlr, kr = lh

lr
, ks = lh

ls
,

τs
′ = σls

rs
, τr

′ = σlr
rr

, rσ = rs + rr · kr
2 and τσ

′ = σls
rσ

. Figure 2.2 shows the
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corresponding signal flow graph. In this work, double lines represent complex
values.
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Figure 2.2: Complex machine model

Now a coordinate system rotating with the speed of the rotating field is
selected as the base coordinate system with the real axis aligned in the direction
of the field. With the help of this new coordinate system the stator current
space vector is can be divided into a torque-producing component isq and
into a flux-producing component isd. As both of these current components
can be controlled independently of each other, dynamic control similar to a
shunt-wound DC machine can be achieved. If the complex equations (2.9)
and (2.10) are divided into their real and imaginary parts, four scalar equations
which describe the dynamic behavior of the induction machine can be obtained.
Because of field orientation ωk = ωs is set; for the same reason ψrq = 0 is set.
The appropriate signal flow graph can be seen in figure 2.3.

isd + τσ
′ disd

dτ
= ωsτσ

′isq +
kr

rστr
ψrd +

1

rσ
usd (2.11)

isq + τσ
′ disq

dτ
= −ωsτσ

′isd −
kr

rσ
ωψrd +

1

rσ
usq (2.12)

ψrd + τr
dψrd

dτ
= lhisd (2.13)

0 = −(ωs − ω)τrψrd + lhisq (2.14)

Equation (2.14) is of no significance for the control and hence, it is not con-
sidered for further analysis. However, it describes the condition for field ori-
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entation, i. e. the position angle of the field coordinate system with respect to
the fixed stator coordinate frame can be determined with it. Therefore equa-
tion (2.14) is resolved for the slip or rotor frequency1 ωr = ωs − ω and after
doing this, the following equation can be obtained:

ωr = (ωs − ω) =
lhisq

τrψrd
(2.15)

The value of ψrd required for the calculation of the above relationship can be
obtained from the differential equation (2.13). By adding the calculated slip
speed ωr to the mechanical rotating speed ω of the rotor, the stator speed ωs

results. The integration of ωs provides the field angle δ. The overall signal flow
graph of the induction machine can be seen in figure 2.4.
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Figure 2.3: Scalar machine model (field coordinates)

1 The rotor frequency is not the mechanical rotating frequency but the frequency of the
currents flowing in the rotor.

10



is

(S)

e j- δ

lh

is

(F)

d q
τr τm

ωr

ω

ωs δ

τr

ψrd

Figure 2.4: Rotor model
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