
Chapter 2

Asset Allocation with Benchmark

Relative wealth concerns are important determinants of individual investor behavior.

When valuing wealth, investors do not only care about their own wealth, but also

about their wealth compared to others. The satisfaction with their own situation

depends on how much others have earned. Indeed, a growing stream of literature

in financial economics highlights the importance of relative wealth concerns. Frey

and Stutzer (2002) establish the concept of happiness research in economics. Abel

(1990) and Gali (1994) were the first to model relative wealth concerns in asset

pricing. They studied portfolio decisions in the presence of consumption externalities

where agents have preferences defining their consumption as well as the average

consumption in the economy, and they introduce the notion of “keeping up with

the Joneses” (KUJ) preferences. They show that the presence of KUJ preferences

lead to a higher equilibrium risk premium than predicted by the CAPM. Garcia

and Strobl (2009) formulate the concept of KUJ preferences in a noisy rational

expectations equilibrium economy. Gomez, Pristley, and Zapatero (2009) study the

cross-sectional implications of relative wealth concerns.

Relative wealth concerns also play an important role in delegated asset manage-

ment. When investing in mutual funds, individual investors are primarily concerned

about the investment performance of their fund relative to a benchmark index. Em-

pirical evidence suggests that money tends to flow into funds that perform well rel-

ative to a benchmark, see for example, Gruber (1996), Chevalier and Ellison (1997),

Admati and Pfleiderer (1997), or Sirri and Tufano (1998). This gives asset man-

agers an implicit incentive to maximize fund performance relative to a pre-specified

benchmark index. The focus on relative fund performance increases the likelihood

of attracting new money. Given that the remuneration contracts of most investment
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funds are based on a fixed percentage of assets under management, it is rational for

asset managers to be concerned with relative fund performance. Basak, Shapiro, and

Tepla (2006), Basak, Pavlova, and Shapiro (2007), and Basak, Pavlova, and Shapiro

(2008) study the effect of implicit incentives in money management. Further, re-

munerating managers directly, based on relative performance, also gives them an

explicit incentive to focus on relative wealth.

The use of a benchmark can also be considered an attempt to align manager be-

havior with investor incentives. When a manager is compensated on the basis of the

portfolio’s relative performance vis à vis a benchmark, he is inclined to minimize the

risk of deviating from the benchmark. In this situation, the benchmark serves as the

risk-free point of reference for the manager. The delegation contract further can be

specified by imposing explicit constraints on the risk level of the manager’s portfolio.

However, constraining a manager’s investment universe – either by maintaining a

relative performance objective, or by explicitly imposing risk constraints – always

causes an efficiency loss in the manager’s use of private information. Despite the

widespread use of benchmarks, academic literature generally questions the useful-

ness of benchmark-adjusted compensation. Admati and Pfleiderer (1997) find that

benchmark-based delegation contracts are inconsistent with optimal risk-sharing,

lead to suboptimal portfolios, and weaken the manager’s incentives to expend ef-

fort.

This chapter introduces the basic concepts of asset allocation with benchmark

orientation and discusses the implications on optimal portfolios. Further, the chapter

analyzes different ways to develop a delegation contract by imposing implicit and

explicit portfolio constraints.

2.1 Mean-Variance Analysis

Before I formulate the portfolio problem with benchmark orientation, I revisit the

standard mean-variance theory of Markowitz (1952). Markowitz formulated a theory

of optimal asset allocation by jointly managing risk and return. He was the first

to offer a mathematical formulation for the concept of portfolio diversification and

thereby established modern portfolio theory.
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2.1.1 Basics of Utility Theory

Investors have utility U(Wp) defined over final wealth Wp of a portfolio of financial

assets. U(Wp) is assumed to be a strictly increasing and concave function of Wp.

That is:
∂U(Wp)

∂Wp

> 0, (2.1)

∂2U(Wp)

∂W 2
p

< 0. (2.2)

The first restriction means that more is preferred to less, which is often referred to as

nonsatiation in the economic literature. More wealth always leads to higher utility.

The second restriction implies risk averse behavior. The curvature of the utility

function determines the intensity of the investor’s absolute risk aversion, defined as

ρ :=
∂2U(Wp)/∂W 2

p

∂U(Wp)/∂Wp

, (2.3)

where ρ is the coefficient of absolute risk aversion. The coefficient of absolute risk

aversion is the absolute dollar amount an investor is willing to pay to avoid a gamble

of a certain absolute value. Given the choice between a fair gamble with expected

payoff G and a risk-free investment with certain payoff P , a risk averse investor

turns down the gamble if G ≤ P , since the gamble offers only risk without reward.

To bear risks, a risk averse investor always demands a premium G − P > 0.

Exponential utility

To derive a tractable model of portfolio choice, a functional form for U(Wp) must

be imposed. One of the most commonly used utility functions is exponential utility

with constant absolute risk aversion (CARA), defined as

U(Wp) = −exp(−ρWp), (2.4)

where ρ is constant. Exponential utility produces simple results when returns are

normally distributed. Further, the normality assumption is very tractable for port-

folio analysis, as the weighted sum of normally distributed random variables is also

normally distributed. The portfolio problem of a rational investor is how to max-

imize expected utility with respect to the optimal portfolio strategy. Assuming

that portfolio wealth is normally distributed, Wp ∼ N (E[Wp], Var(Wp)), then, the
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expected utility under an exponential utility function (2.4) can be expressed as1

E[U(Wp)] = −exp

(
−ρ

(
E[Wp] − 1

2
ρ Var(Wp)

))
. (2.5)

Maximizing expected utility under an exponential utility function implies that the

optimal investment strategy that maximizes E[U(Wp)] is the one that maximizes

the trade-off between expected value and variance of final wealth Wp.

The CARA setup has a serious shortcoming, however. The assumption of con-

stant absolute risk aversion implies that absolute risk aversion is constant. However,

the assumption of CARA is not in line with actual investor behavior. CARA sug-

gests that a rich investor will be as concerned about a potential loss of $ 1,000 as a

poor person might be. In other words, all investors invest a fixed amount of wealth

into risky assets, regardless of their level of wealth. This feature of exponential

utility is clearly not in line with reality. It is commonly thought that absolute risk

aversion should decrease in wealth. In contrast, power utility implies that absolute

risk aversion is decreasing and that relative risk aversion, defined in terms of relative

wealth, is constant. From an economic point of view, power utility is preferred to

exponential utility. However, exponential utility produces very tractable results in

a Gaussian setting and is therefore preferred in many applications and models with

exogenous information acquisition. For this reason, I assume for the rest of the

thesis that investors have exponential utility. I note that the limitations of CARA

discussed above do not apply to the classic mean-variance theory presented in this

chapter. It can be shown that power utility and other classic utility functions also

give rise to a mean-variance optimization.

2.1.2 Notion of a Portfolio

Final wealth Wp is the amount of wealth that results from investing initial wealth

W0 into a portfolio q of N risky assets. q := [q1, ..., qN ] is an N×1 vector of portfolio

fractions. Asset returns are captured by an N × 1 vector r := [r1, ..., rN ]. Hence,

final wealth is

Wp = (1 + rp)W0, (2.6)

where rp := q′r is the weighted return on the risky assets and q′1 = 1. 1 is the

N ×1 vector of ones. In the presence of a risk-free asset with constant rate of return

1A detailed derivation of this result can be found, e.g., in Gollier (2001).
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rf , q′1 must not equal one. Thus, the investor invests a fraction of wealth q′1 into

a combination of risky assets and the remainder (1 − q′1) into the risk-free asset.

Final wealth, then, is

Wp = W0 + rfW0(1 − q′1) + q′rW0 = (1 + rf )W0 + q′(r − rf1)W0 (2.7)

The asset value of a financial portfolio at the end of the period is the sum of future

wealth from a risk-free strategy and the excess return of a risky strategy q. Risky

asset returns are normally distributed,

r ∼ N (μ,Σ), (2.8)

where μ := [μ1, ..., μN ] is an N × 1 vector of expected returns and Σ is a symmetric

and positive semi-definite N × N covariance matrix. It follows that the expected

return of the risky portfolio is μp := q′μ and the the variance is σp := q′Σ q.

2.1.3 The Markowitz Paradigm

A rational investor maximizes expected utility over final wealth with respect to the

portfolio strategy q,

max
q

E[U(Wp)] (2.9)

Under exponential utility, expected utility maximization results in the classic mean-

variance formulation2

max
q

q′μ − 1

2
ρ q′Σq (2.10)

subject to

q′1 = 1. (2.11)

(2.11) is the constraint that the sum of all portfolio positions must equal one. In

the traditional Markowitz portfolio problem, no position in the risk-free asset is

allowed and the optimal portfolio is fully invested in risky assets. In many practical

applications, (2.26) is solved subject to an additional constraint:

qi ≥ 0, ∀ i = 1, ..., N. (2.12)

2The mean-variance problem can also be derived under other common utility functions such as
quadratic utility U(Wp) = aWp− bW 2

p or power utility U(Wp) = (W 1−ρ
p −1)/(1−ρ), cf. Campbell

and Viceira (2002).


