
Chapter 2

Models and Concepts

In condensed matter physics, one is faced with the intricate task of finding an appropriate

description of systems consisting of a huge number of particles. Owing to the quantum

mechanical nature of the problem and neglecting relativistic effects, we are faced with

the task of solving the many-particle Schrödinger equation

H̃Ψ(x1 . . . xN) = EΨ(x1 . . . xN) , (2.1)

where the number of the particles N is of the order of the Avogadro constant NA = 1023.

In a real solid, the electrons interact with each other and move in the field of the nuclei,

which in turn interact among themselves and oscillate about their equilibrium positions.

As always, we have to employ physical intuition, which here tells us that the fact that

the nuclei are much heavier than the electrons, me/Mn ≈ 10−4 − 10−6, will cause the

electrons to move rather independently of the motion of the nuclei. In other words, the

motion of electrons and nuclei is decoupled, which is true up to terms of order me/Mn.

If we are only interested in the excitations of the electronic system, we may regard the

nuclei as frozen in their equilibrium positions and solve the electronic problem in a

static background potential of the nuclei. This is the essence of the Born-Oppenheimer

approximation, which leaves us with the Hamiltonian of the electronic system subject

to an external potential V:

H̃ = H̃0 + Ṽee =

N∑
i=1

(
− �

2

2m
∇2

x + Vext(xi)

)
+ e2

∑
i< j

1∣∣∣xi − x j

∣∣∣ . (2.2)

What we neglect are the excitations of the system of the nuclei – the phonons – and

their interaction with electrons, but we still have the freedom to introduce phonons and

the electron-phonon coupling perturbatively afterwards1. By distinguishing core and

1The fact that the electron-phonon interaction is a small perturbation does not imply that it has a small

effect. It may break symmetries and lift the associated selection rules, as for example recently observed

in the case of phonon mediated tunneling into graphene [42].



8 2. Models and Concepts

valence electrons, the problem is further simplified. The former are tightly bound to

the nuclei and do not participate in bonding. The Hamiltonian (2.2) then describes the

system of valence electrons moving in the external potential of the ion cores. Despite

these simplifications, an exact solution of the many-particle Schrödinger equation is

impossible and one has to resort to approximations. Two main routes have evolved to

deal with the Hamiltonian (2.2): the density functional theory and a description in terms

of quantum lattice models.

2.1 Density Functional Theory
The density functional theory (DFT) is a very successful ab-initio theory to describe the

band features of weakly correlated materials. Its applications range from the description

of molecules to solids, within quantum chemistry and solid state physics and it is widely

used in science and industry. A thorough introduction can e.g. be found in Ref. [43].

The theory is based on the two Hohenberg-Kohn theorems. The first theorem states

that for an interacting electron system in an external potential Vext, this potential is

uniquely determined (up to a constant) by the ground state density n0(x). This statement

is nontrivial, for it implies that the ground state properties of the interacting N-particle

system, including the many-body wavefunction, are uniquely determined through the

ground state density only. Instead of dealing with the full wavefunction which depends

on 3N particle coordinates, it is sufficient to use the density. A recipe of how to calculate

the ground-state density is provided by the second Hohenberg-Kohn theorem.

In the formulation by Levy and Lieb, a functional of the density is constructed on

the space of densities that can be represented by N-body wavefunctions. It is defined

as the minimum of the expectation values of the exact kinetic and electron-electron

interaction, taken over the class of wavefunctions that yield the density n(x): F[n] :=

minΨn〈Ψ|T + Vee|Ψ〉. By the Ritz variational principle, the ground-state density n0(x)

minimizes F[n] and the functional of the total energy is given by

E[n] = F[n] +

∫
dx vext(x)n(x) . (2.3)

In order to find the ground state density of the system, one therefore needs to solve the

constrained variational problem
δE[n]

δn(x)
= μ , (2.4)

where μ plays the role of a Lagrangian multiplier (chemical potential) which fixes the

particle number N =
∫

dx n(x). In practice, this is achieved by considering a noninter-

acting auxiliary system in an effective potential described by the Schrödinger equation(
− �

2

2m
∇2 + veff(x)

)
ψi(x) = εi ψi(x) , (2.5)
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where the effective potential is chosen such that the Kohn-Sham orbitals ψi reproduce

the density of the interacting many-body system:

n(x) =

N∑
i=1

|ψi(x)|2 . (2.6)

This yields the correct particle number given that the Kohn-Sham orbitals fulfill the

orthonormality constraint 〈ψi|ψ j〉 = δi j, i, j = 1, . . . ,N. In order to identify the effective

potential, the energy functional is written in the form

E[n] = T0[n] + EH[n] + Eext[n] + Exc[n] , (2.7)

where the kinetic energy functional T0 of the noninteracting system, the Hartree func-

tional EH and the corresponding potential vH are known explicitly. The exchange corre-

lation functional contains the many-particle effects. Variation gives

δE[n]

δn
δn
δψ∗
=
δT0

δψ∗
+ (vH + vext + vxc)

δn
δψ∗
= 0 . (2.8)

Solving (2.5) is hence equivalent to (2.4) provided that veff = vH + vext + vxc. The Kohn-

Sham eigenvalues play the role of Lagrange-multipliers which ensure the orthonormal-

ity constraints. Since the effective potential depends on the density and also determines

the density through the solution of the Kohn-Sham equations, these have to be solved

self-consistently.

The energy functional (2.7) is known except for the exchange-correlation functional.

Knowing Exc[n] would imply that the ground state properties of all interacting electron

systems were known. Various approximations to the exchange-correlation functional

have been devised, the most common being the local density- (LDA) or generalized

gradient approximations (GGA). The LDA (GGA) are known to over(under)-estimate

bond strengths. The local spin-density approximation includes the electron spin and

a relativistic formulation of DFT has been developed. The available electronic struc-

ture codes mainly differ in the construction of the basis set and potential used to solve

the Kohn-Sham equations. Pseudopotential methods allow a very fast solution of large

systems. In the augmented wave methods partial solutions within atomic spheres and in-

terstitial regions have to be matched such that the solution is continuously differentiable

at the boundary for all energies. The related computational effort could be significantly

reduced by linearizing the matching condition in the LMTO formalism introduced by

Anderson [44]. Recent augmented wave codes are very accurate, but the construction

of the basis set (APW, FLAPW) in these codes (WIEN2k, FLEUR) is rather involved.

A compromise between speed and accuracy is the projector augmented wave method

implemented in VASP.



10 2. Models and Concepts

2.2 Quantum Lattice Models
Methods of quantum field theory are widely used in condensed matter physics. They

provide a convenient way to treat systems consisting of many particles. This includes

cases where the particle number is allowed to fluctuate, as in superconductivity. The dif-

ficulty to construct and deal with (anti-)symmetrized (fermionic) bosonic many-particle

wave functions for identical particles is circumvented by introducing operators that cre-

ate or annihilate a particle in a given state. The proper (fermion) boson statistics are

imposed through the (anti-)commutation relations of the field operators:

[ψα(x), ψβ(x′)](+)− = 0 , [ψα(x), ψ†β(x
′)](+)− = δαβδ(x − x′) . (2.9)

Instead of considering the many-particle Schrödinger equation H|ψ〉 = E|ψ〉 in a par-

ticular representation, such as the position representation (2.1), with a fixed number of

particles, the Hamiltonian itself is expressed in terms of field operators. This corre-

sponds to replacing the wavefunction by an operator acting on a quantum field with a

fluctuating particle number and is referred to as second quantization. As described in

standard textbooks, the Hamiltonian is expressed in terms of field operators as

H =
∑
αβ

∫
dxψ†α(x)

(
− �

2

2m
∇2

x + Vext(x)

)
ψα(x)

+
1

2

∑
αβγδ

∫
dx

∫
dx′ψ†α(x)ψ†β(x

′)V(x − x′)ψδ(x′)ψγ(x) . (2.10)

A representation which is more convenient for practical calculations can be obtained by

considering Wannier functions. These are localized around a given lattice site Xi and

can be chosen as

φiα(x − Xi) =
1√
N

∑
k

e−ikXiψkα(x) , (2.11)

where the ψkα(x) are Bloch functions of the noninteracting Hamiltonian. The index α
labels spins and orbitals. Defining the (creation) annihilation opearator of a Wannier

state as (c†iα) ciα, the field operators can be expressed in the form ψα(x) =
∑

i φiα(x)ciα

and the Hamiltonian takes the form of a lattice model

H =
∑

i j

∑
αβ

tαβi j c†iαc jβ +
1

2

∑
i jkl

∑
αβγδ

Uαβγδi jkl c†iαc
†
jβclδckγ , (2.12)

where the matrix elements are given by

tαβi j =

∫
dx φ∗α(x − Xi)

(
− �

2

2m
∇2 + Vext(x)

)
φβ(x − X j) ,

Uαβγδi jkl = e2

∫
dx

∫
dx′
φ∗α(x − Xi)φ

∗
β(x
′ − X j)φγ(x − Xk)φδ(x′ − Xl)

|x − x′| . (2.13)
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The second quantization representation is essentially a reformulation of the original

problem and the task of reliably calculating the properties of the general Hamiltonian

(2.12) is theoretically challenging. Instead of attempting a full diagonalization of the

problem, one concentrates on the causal single-particle (and sometimes two-particle)

Green function,

Gαβ(x − x′, τ − τ′) := −〈Tτcα(x, τ)c†β(x′, τ′)〉 . (2.14)

which takes the place as the central quantity similar to the density in DFT. The remainder

of this thesis is mainly concerned with finding approximations to the Green function, or

the self-energy. In reciprocal space, the latter is defined through G(k, iω)−1 = iω + μ −
hk − Σ(k, iω). Here hk is the Fourier transform of the hopping, the bare dispersion. The

self-energy contains information about the electronic correlations. Spatial correlations

– which are of particular interest here – manifest themselves in an explicit wavevector

dependence of the self-energy. Approximate results should be examined to whether a

feature is inherent to the model or an artefact of the particular approximation. This

is difficult for the complex Hamiltonian (2.12). For the study of the basic physical

mechanisms, simpler model Hamiltonians are traditionally used. These are derived from

the general Hamiltonian by reducing the number of matrix elements to the dominant

contributions, often assuming a short-range Coulomb interaction.

A prominent example obtained in this way is the single-band Hubbard model (or

multi-orbital generalizations thereof). In a tight-binding approximation, the hopping

matrix element in (2.13) is taken with respect to the atomic orbitals, which have little

overlap with their neighbors. Therefore, the matrix elements are usually restricted to

nearest-neighbor hopping t and next-nearest-neighbor hopping t′. Due to screening, the

local intraatomic matrix elements Uαβγδiiii are expected to strongly dominate. Hubbard

proposed to restrict the Coulomb matrix to these elements [45, 46]. For a single band-

model, the resulting Hamiltonian reads

H =
∑
〈i j〉σ

ti jc
†
iσc jσ + U

∑
i

ni↑ni↓ , (2.15)

where ti j = t if i is a nearest neighbor of j, ti j = t′ for next-nearest-neighbors and zero

otherwise. Despite the approximate nature of the model it is still under current active

research. An exact (Bethe-Ansatz) solution is available only for the one-dimensional

model [47, 48], which is a Luttinger liquid [49]. The two-dimensional square lattice

model is a minimal model to study the phenomenon of high-temperature superconduc-

tivity. It is believed to capture the low energy physics of the cuprates [50]. Another

aspect is the Mott transition [14, 9] which arises due to the interplay between the kinetic

energy and Coulomb repulsion. The orbital selective Mott transition was studied in the

two-orbital model [51]. The model was investigated on the Kagomé lattice to elucidate

the effect of frustration [52]. The abundance of numerical results make the Hubbard

model an ideal benchmark system for testing new theoretical approaches.


