Content

1 Introduction	1
1.1 Preface: motivating thoughts	1
1.2 Measuring the differential cross section	3
1.3 The scope of this work	6
2 Theory and Methods	10
2.1 Cold Molecules in a Collision Free Environment: Molecular Beams	10
2.2 Molecular Spectroscopy	11
2.3 Reaction Dynamics: Modeling the Angular Distribution of a Photoinitiated	
Bimolecular Reaction	14
2.4 Random Number Generation	20
3 Three Dimensional Velocity Map Imaging	24
3.1 3D Velocity Map Imaging: Set-up and resolution improvement compared to	
3D Ion Imaging	24
Subsections	
L Introduction	24
II Experimental set-up	24
IIa Vacuum System/Molecular Beam	28
IIb. TOF spectrometer and detector	20 29
IIc. Detector response characteristics	31
III. Determination of Linear Momentum	32
IV. Experimental Calibration	37
V. Kinetic Energy Resolution	39
VI. Conclusions and outlook	41
VII. Acknowledgments	42
VIII. References	42
3.2 Imaging chemical reactions — 3D velocity mapping	44
Subsections	
1 Introduction	44
2 Imaging three dimensions	47
2.1 3D Imaging	47
2.1.1 General Approach	47
2.1.2 Sensitivity: The momentum dispersion matrix M	51
2.2.1 Conventional TOF mass spectrometry	52
2.2.2 Measuring time: Reduction to 1D Imaging	54
2.2.3 Measuring position: Reduction to 2D Imaging	55
2.2.4 Measuring time and position: Full 3D Imaging	55

2.3 Sources of Uncertainty: Resolution Optimization	56
2.3.1 Detector uncertainty σ_D	58
2.3.2 Experimental uncertainty σ_E	58
2.3.3 Total uncertainty σ	60
2.3.4 The crucial role of σ_{Fy}	61
2.4 3D Imaging Experimental Design	63
2.4.1 General Considerations	63
2.4.2 The Performance of 3D Velocity Map Imaging	66
2.5 Applications of 3D Imaging to Reaction Dynamics	69
2.5.1 Multi-Photon Excitation Processes	71
2.5.2 Constrained geometry bimolecular reactions	73
3 Recent Technology	74
3.1 Introduction	74
3.2 Technology	76
3.2.1 Micro-channel plates	76
3.2.2 Multi-coincidence 3D detectors for low-energy	
particles	77
3.2.3 Electrostatic field configurations	87
3.2.4 Doppler-free imaging	91
4 Recent Applications	92
4.1 Photodissociation	93
4.1.1 Summary of "traditional" photodissociation studies	93
4.1.2 Photodissociation dynamics studied in the	
femtosecond domain	97
4.1.3 Photodissociation of cations	97
4.1.4 Photodissociation of clusters	98
4.1.5 Roaming atom elimination mechanism	99
4.2 Alignment and Orientation	99
4.2.1 Polarisation due to electric fields	101
4.2.2 Polarisation of photofragments	102
4.2.3 Alignment in a two-photon transition	102
4.3 Bimolecular Reactions	104
4.3.1 Experimental configurations	104
4.3.2 A+BC triatomic benchmark reactions	105
4.3.3 Product-pair correlation measurement	106
4.3.4 The resonant reaction mechanism	10/
4.5.5 Other results 5 Conclusion and Outlook	110
6 Acknowledgments	111
7 References	112
4 Investigating Bimolecular Reactions by 3D Velocity Mapping	135
4.1 Complete Characterization of the Constrained Geometry Rimolecular	
4.1 Complete Characterization of the Constrained Geometry Binolecular Reaction $O(^{1}D) + N_{2}O \rightarrow NO + NO$ by 3D Velocity Man Imaging	135
Subsections	155
	107
1 Introduction	136
2 Experimental 2 Deculta	13/
3 Results 2 1 Department Dreparation	139
J.1 INTALIANI FIEPATALION	139

3.2 Product Quantum state population	141
3.3 3D Product Momentum distributions	143
4 Discussion 4.1 Densities and Number Distributions	140
4.1 Densities and Number Distributions 4.2 Product Anisotropy and Polarization Effects	140
4.3 Speed Distributions	149
4.4 Energy Partitioning	151
4.5 Mechanism	153
5 Conclusion	155
6 Acknowledgment	156
/ References	156
4.2 Measurement of the differential cross section of the photo-initiated	
reactive collision of $O(^{1}D) + D_{2}$ using only one molecular beam:	
a study by 3D Velocity Mapping	158
Subsections	
I. Introduction	158
II. Experimental	162
III. Data Analysis	163
IV. Results	169
a. Dissociation laser position calibration	169
b. D-atom product velocity distribution	171
V. Conclusion	174
VI. Acknowledgments	175
VII. References	175
5 Stereodynamical aspects of the REMPI[2+1] process of HCl	177
5.1 Intermediate state polarization in multiphoton ionization of HCl	177
Subsections	
I. Introduction	178
II. Theory	180
A. Angular momentum polarization of the molecular	
excited state after two-photon excitation	180
B. The symmetry of two-photon transitions in HCl	184
C. Excited state alignment: $\Sigma \leftarrow \Sigma$ transition	185
D. Photofragment angular distribution axes after	
multiphoton dissociation from the polarized state	187
III. Experiment	189
A. REMPI spectra of HCl^+	190
B. 3D imaging of H^+	191
IV. Experimental Results and Analysis	191
A. Mechanism of HCl ionization and of H ⁺ production	191
B. Analysis of intensities in the rotational spectra of HCl:	
Determination of the parameter b	193

C. Determination of the intermediate state alignment	196
D. 3D imaging results: Photofragment angular distributions	197
E. Higher order effects	199
F. Anisotropy in the molecular beam	200
V. Summary	200
VI. Acknowledgments	201
VII. Appendix A: Transformation of the Light Polarization Matrix E_{KQ} VIII. Appendix B: Calculation of the Two-Photon	201
Excitation Matrix $F_{K_fQ_f}(J_fJ_f)$	202
IX. Appendix C: Angular Distribution of the Molecular	
Axis After Excitation to the Continuum Energy States	204
X. References	205
5.2 Proton formation dynamics in the REMPI[2+1] process via the $F^1\Delta_2$	
and $f^3\Delta_2$ Rydberg states of HCl investigated by 3D Velocity Mapping	207
Subsections	
I. Introduction	207
II. Experimental	210
III. Experimental Results and Discussion	211
a. Proton formation in the $f^3 \Delta_2 \leftarrow X^1 \Sigma^+(0,0)$ band system	213
b. Proton formation in the $F^1\Delta_2 \leftarrow X^1\Sigma^+(1,0)$ band system	219
IV. Conclusion	222
V. Acknowledgments	223
VI. References	224
6 Appendix	225
6.1 Assignment of Velocity Vectors to Velocity Mapping Raw Data	225
6.1.1 SimIon Electrode Array	225
6.1.2 MATLAB Code: Auswertung	229
6.2 Reconstruction of the Center of Mass Velocity Distribution	244
6.2.1 Graphical User Interface	244
6.2.2 Source Code: MCR_cmvelocity_rec	249
7 Acknowledgments	266
Curriculum Vitae	267