
Chapter 1

Introduction

Packing a set of objects into a container or into a set of containers has many
applications in everyday life. Some of them are immediately evident, such as
packing clothes into a suitcase before going on vacation or loading containers
onto a ship; see Fig. 1.1. Some of them appear more hidden, e.g., in scheduling
problems where the task is to assign a set of jobs to a number of machines.
If we model the machines as containers and the jobs as the objects which
have to be packed, then minimizing the number of used containers, implies
a schedule that uses a minimum number of machines.

Over the years, a huge variety of packing problems has been studied.
They differ in the shape of the objects or in the shape of the container(s).
Moreover, there are many additional constraints such as constraints on the
order in which the objects have to be packed or the placement of the objects
inside the container, e.g., rotating objects might be allowed or not.

Popular packing problems are, e.g., the bin packing problem and the strip
packing problem. In the bin packing problem a set of one-dimensional objects
with size less than one have to be packed into unit-sized containers. The task
is to use as few containers as possible. The strip packing problem asks for a
placement of rectangles inside a semi-infinite strip of width one, minimizing
the height used. These problems have been studied in one, two, and three
dimensions.

In the strip packing problem the container and the objects usually have
a rectangular shape. If the objects are not rectangles but some (arbitrary)
polygons, the challenge is even harder. The same holds if the objects have a
regular shape but not the container. This is often the case in packing prob-
lems that arise in real world applications. A packing problem that appears in
industrial applications is the computation of the volume of a trunk. Accord-
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Figure 1.1: A box with volume one liter, that is used to measure the volume of a
trunk (image source: www.autobild.de). A ship packed with containers (image source:
www.wikipedia.org).

ing to the Deutsches Institut für Normung1 (DIN 70020-1), the trunk volume
is not the continuous volume (e.g., the amount of water that can be filled
into it) but rather the number of boxes with a volume of 1 liter that can be
packed into it; see Fig. 1.1. A trunk is a three-dimensional—not necessarily
convex—polygon. Thus, the task is to pack as many rectangular boxes as
possible into a polygon. This problem has, e.g., been studied in [Rei06].

Most of the packing problems are computationally hard, meaning that—
roughly speaking—an optimal solution can only be found with enormous
computational effort. However, for small instances exact solutions can be
found in reasonable time. There are three main branches in the study of pack-
ing problems: exact algorithms, heuristics, and approximation algorithms.

Exact algorithms for packing problems are often based on methods that
enumerate the solution space completely, e.g., the branch-and-bound method.
These approaches can be accelerated by providing good lower bounds on
the solution value. For example, for the bin packing problem, dual-feasible
functions [LMM02] often quickly provide near-optimal lower bounds. For a
survey on exact methods see [FS98]. This survey also contains heuristics
that are applied to packing problems. They often yield good (although not
provably good) solutions, within a small amount of time.

The focus in this thesis is on approximation algorithms. These algorithms
provide near-optimal solutions, and there is a proven bound on the solution
quality. For example, for the strip packing problem, Baker et al. [BCR80]
proved that the algorithm that always chooses the bottommost and leftmost
position is a 3-approximation. This means that the height of the packing
produced by the algorithm is at most three times higher than an optimal
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packing. Moreover, they provide an example in which the factor of three is
actually achieved. Hence, there is an upper bound and a lower bound of 3
on the solution quality. A survey on approximation algorithms for packing
problems can be found in [Ste08].

Outline of this Thesis In Chapter 2 we present basic definitions used
throughout this work.

Chapter 3 studies the problem of dynamically inserting and deleting
blocks from an array. The blocks can be moved inside the array and our
goals are to minimize the time until the last block is removed and the costs
for the block moves. This problem differs from other storage allocation prob-
lems in particular in the way the blocks can be moved. We present complexity
results, different algorithms with provably good behavior, and provide com-
putational experiments.

A variant of the strip packing problem with additional constraints—Tetris
constraint and gravity constraint—is studied in Chapter 4. We present two
algorithms achieving asymptotic competitive factors of 3.5 and 2.6154, re-
spectively. These algorithms improve the best previously known algorithm,
which achieves a factor of 4.

In Chapter 5 we present two closely related problems. They both have
in common that point sets with small interior distances have to be selected.
In particular, the first problem asks for the selection of grid points from the
two-dimensional integer grid such that the average pairwise L1 distances are
minimized. We present the first optimal algorithm for this problem. In the
second problem, we have to pack shapes with fixed area into a unit square,
minimizing, again, the distances inside the shapes. We present a 5.3827-
approximation algorithm.

Every chapter starts with a problem statement and definitions needed in
the rest of the chapter. Moreover, we present work related to the problem,
at the beginning of every chapter. Additionally, Chapter 3 contains related
work at the beginning of the Sections 3.3 and 3.4.

Three papers form the basis of this thesis. All of them were prepared in
collaboration with other people. Chapter 3 is based on the paper [BFKS09]
and Chapter 4 on the paper [FKS09]. Both were prepared together with
Sándor P. Fekete and Tom Kamphans.

The paper [DFR+09] forms the basis for Section 5.2. It was prepared in
collaboration with Erik D. Demaine, Sándor P. Fekete, Günther Rote,
Daria Schymura, and Mariano Zelke.


