
Chapter 2

Testing in hidden Markov models

under nonstandard conditions

In this chapter we introduce maximum likelihood estimation and hypothesis testing based

on the likelihood ratio in the context of HMMs. The main focus is to investigate the

asymptotic behavior of the maximum likelihood estimator (MLE) and the likelihood ratio

test (LRT) under so-called nonstandard conditions. In these cases usually the asymptotic

normal or χ2-distribution does not hold. This occurs for example if the true value lies on

the boundary of the parameter space.

Before formally introducing these concepts we may begin with a motivating example rep-

resenting some relevant testing problem where crucial boundary constraints are present.

A first example

We want to investigate whether a hidden state k is always left immediately, i.e. the (k, k)th

entry of the transition matrix is zero:

αkk := P (Ui+1 = k|Ui = k) = 0.

Clearly, αkk lies in [0, 1], such that this problem is concerned with the boundary of the

parameter space.

As HMMs can either be seen as a noisy version of a Markov chain or as a mixture with not

i.i.d. but Markovian regime we may watch out for analogous situations in both directions.

Let us for a moment assume that (Ui)i is directly observed, then our testing problem

becomes rather trivial. Under the hypothesis H : αkk = 0 the event {Ui = k, Ui+1 = k} has

probability zero, such that a reasonable testing procedure based on a sample U1, . . . , Un
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would reject H if and only if Tn = # {i|Ui = k, Ui+1 = k} > 0. The distribution of the

test statistic Tn under H coincides therefore with the Dirac measure concentrated at zero.

Formally this testing procedure can be seen as LRT.

Finding an analogy to our testing problem in context of i.i.d. mixtures is less straight

forward, since the notion of transition probabilities is, of course, meaningless in this context.

Also, the testing problem for components having zero weights πk = 0 does not give a valid

analogous setup because in this case crucial regularity conditions are violated, since the

number of components is not well-defined (cf. Chapter 3). We may discuss testing

H ′ : πk =
1

2
against K ′ : πk >

1

2
.

By restricting the parameter space Θ̄ = [1/2, 1] this testing problem also appears as a

boundary case. The general theory discussing boundary situations for i.i.d. r.v.s (e.g. Self

and Liang, 1987) shows that under certain regularity conditions the LRT-statistic behaves

under the hypothesis asymptotically as a mixture of a χ2
0- and χ2

1-distributed r.v.s with

equal weights, where the subindex denotes the number of the degrees of freedom of the

χ2-distribution, the notation χ0 consistently denotes the Dirac measure at zero.

Summarizing this we note that the i.i.d. analogue suggests that the LRT-statistic for

testing H : αkk = 0 in an HMM is asymptotically zero with probability 1/2, while the

Markov chain analogue yields a distribution degenerated at zero.

In our analysis we actually find both cases represented. On one hand we will show that the

results from Self and Liang (1987) and others can be extended to the HMM framework, such

that the LRT w.r.t. the likelihood function of an HMM follows asymptotically the ”one-

half-one-half” mixture under H. On the other hand simulations show that the finite sample

behavior of the LRT for many parameter settings exhibits intermediate stages between the

two described cases. Especially if the state-dependent distributions are well-separated the

weight of χ0 appears to be close to one even for moderately large sample sizes, such that

the theoretical result is a matter of huge sample sizes (cf. Section 2.3.2).

Introductory remarks

As this example indicates, testing problems involving the boundary are frequently en-

countered in practice of HMMs. Other relevant testing problems might be whether the

underlying Markov chain tends to stay in the state k, or whether the state j is on aver-

age more frequently visited than the state k. One requires testing for zero-entries of the

transition matrix as in the introductory example, testing a one-sided hypothesis on the

parameters of the transition matrix and on the parameters of the stationary distribution
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of the underlying Markov chain, respectively. All these testing problems require procedures

where the boundary situation is taken into account.

For i.i.d. r.v.s testing hypotheses, when the true parameter lies on the boundary or under

similar nonstandard conditions, is widely discussed. Classical theoretical contributions are

Chernoff (1954), Self and Liang (1987), Shapiro (1985), Shapiro (1988) and others, more

recently Drton (2009) introduces algebraic geometric techniques to this field for the analysis

of the parameter space and especially its singularities. Boundary situations achieve also

a strong interest from the view of applications as demonstrated by many publications, for

example in the context of econometrics (Demos and Sentana, 1998), geosciences (Kitchens,

1998, p.812) and clinical trials (Balabdaoui, Mielke and Munk, 2009). More references can

be found in the monograph by Silvapulle and Sen (2005).

As the LRT based on the MLE is a major approach for testing hypothesis in the i.i.d. setup

for various reasons we may also focus on LRT procedures. In the context of HMMs parame-

ter estimation via likelihood-based methods is well-established. For general HMMs, strong

consistency of the MLE was proved by Leroux (1992b). Bickel et al. (1998) established

asymptotic normality of the score with limit covariance matrix J0, as well as a uniform

law of large numbers for the Hessian of the log-likelihood with limit matrix −J0 (for re-

lated results see also Douc and Matias, 2001). Once these major results are obtained, the

standard likelihood theory such as asymptotic normality of the MLE with limit covariance

J −1
0 (Bickel et al., 1998) and the asymptotic χ2-approximation to the distribution of the

LRT under regularity conditions (Giudici et al., 2000) follows as in the i.i.d. setting.

We will show that the likelihood theory under nonstandard conditions with parameters on

the boundary, as developed by Chernoff (1954) and Self and Liang (1987), can be extended

from the i.i.d. case to HMMs by using the results of Bickel et al. (1998). In particular, we

derive the asymptotic distribution theory for the LRT for general, nonlinear hypotheses

with parameters on the boundary, and these parameters might also involve the parameters

of the state-dependent distributions.

In the following, after introducing to likelihood inference of HMMs, we discuss how the

asymptotic distribution theory for the LRT for HMMs under nonstandard conditions. An

extensive list of examples is given and simulation results as well as an illustrative applica-

tion of the tests for a series of epileptic seizure count data, previously analyzed by Le et al.

(1992), are presented.

The main results of this chapter are published in Dannemann and Holzmann (2008b).
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2.1 Likelihood inference for HMMs

As introduced in Section 1.5 we denote the HMM as bivariate process (Ui, Yi)i, where (Ui)i

is the unobserved Markov chain and (Yi)i the observed data. Throughout the chapter we

consider parametric HMMs, i.e. the state-dependent distribution functions (sdfs) are from

some parametric family (fθ)θ. The parameter of interest is constituted of the transition

matrix P = (αjk)1≤j,k≤m and the parameters of sdfs θk ∈ Θ ⊂ R
d for k = 1, . . . ,m. We

denote the parameter by

ϑ = (α11, . . . , α1,m−1, α21, . . . , αm,m−1, θ1, . . . , θm)

and assume ϑ ∈ Θ̄ ⊂ R
d̄ with d̄ = d + m(m − 1). In general, ϑ may also denote a

parametrization of the HMM that differs from the standard parametrization as defined

above, for example if some elements are known and fixed or exhibit a priori equality

constraints, e.g. α12(ϑ) = α32(ϑ). In this case one may understand in the following the

transition probabilities αjk(ϑ) as well as the parameters of the sdfs θk(ϑ) as functions of

ϑ. The subindex 0 indicates the true value ϑ0 and the true distribution P0 of the bivariate

process
(
Ui, Yi

)
i
. Note that since the parameters of the transition matrix αjk(ϑ) depend

on ϑ, so do the components of the unique stationary distribution πk = πk(ϑ).

The joint density of (U1, . . . , Un, Y1, . . . , Yn) (w.r.t. (counting measure)n × νn) is given by

pn(u1, . . . , un, y1, . . . , yn;ϑ) = pn(u1, . . . , un, y1, . . . , yn;α11, . . . , αm,m−1, θ1, . . . , θm)

= πu1
fθu1

(y1)
n∏
i=2

αui−1,ui
fθui

(yi)

= πu1

n−1∏
i=1

αui,ui+1

n∏
i=1

fθui
(yi),

the joint density of (Y1, . . . , Yn) (w.r.t. νn) by

pn(y1, . . . , yn;ϑ) =
m∑

u1=1

· · ·
m∑

un=1

pn(u1, . . . , un, y1, . . . , yn;ϑ), (2.1)

and the log likelihood is denoted by Ln(ϑ) = log pn(y1, . . . , yn;ϑ). A maximum likelihood

estimator (MLE) ϑ̂ is any value of ϑ ∈ Θ̄ which maximizes Ln(ϑ):

ϑ̂ := arg max
ϑ∈Θ̄

Ln(ϑ).

Computational issues concerning the evaluation of the log likelihood and its maximizer is

discussed in Section 2.3.
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2.1.1 ML-estimation and LR-testing under regular conditions for

HMMs

ML-estimation is well established in the context of HMMs. Baum and Petrie (1966) con-

sider HMMs where the sample space of the observables Yi is finite. They elaborated the

essential techniques for the analysis of MLEs for HMMs. Leroux (1992b) considers, as we

do, HMMs with finite state space and general observation space and shows that the MLE

is strongly consistent, i.e.

ϑ̂ −→ ϑ0 P0 − a.s., when n→ ∞
under classical Wald-type assumptions (for a detailed discussion of the result see Danne-

mann, 2006, pp.7-17). Leroux (1992b) also discusses the important issue of identifiability

and shows that it holds if (and only if) the corresponding family of m-component mixtures

is identifiable.

Asymptotic normality of the MLE

When we speak about asymptotic normality of the MLE we always mean that the sequence√
n(ϑ̂ − ϑ0) is asymptotically normally distributed with mean zero and finite covariance

matrix. Bickel et al. (1998) shows asymptotic normality of the MLE for HMMs. As this

result is the corner stone to establish the asymptotic theory for LR-testing under standard

and nonstandard conditions we may discuss this result in some detail. We begin with a

description of the assumptions under which asymptotic normality is proved by Bickel et al.

(1998). Besides ergodicity of the Markov chain they mainly suggest the following regularity

conditions:

Assumption 2.1. The maps ϑ �→ αjk(ϑ) and ϑ �→ πk(ϑ) for 1 ≤ j, k ≤ m have two

continuous derivatives and the maps ϑ �→ fθk(ϑ)(y) for 1 ≤ k ≤ m and y ∈ Y have two

continuous derivatives.

Assumption 2.2. Let ϑ = (ϑ1, . . . , ϑd̄). There exists a δ > 0 such that

1.) for all i ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ ddϑi log fθk(ϑ)(Y1)

∣∣∣∣2
]
<∞;

2.) for all i, j ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ d2

dϑidϑj
log fθk(ϑ)(Y1)

∣∣∣∣
]
<∞;
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3.) for j = 1, 2, all il ∈
{
1, . . . , d̄

}
, l = 1, . . . , j and for all 1 ≤ k ≤ m∫

sup
ϑ∈Bδ(ϑ0)

∣∣∣∣ dj

dϑi1 · · · dϑij
fθk(ϑ)(y)

∣∣∣∣ dν(y) <∞.

Assumption 2.3. There exists a δ > 0 such that with

ρ0(y) = sup
ϑ∈Bδ(ϑ0)

max
1≤j,k≤m

fθj(ϑ)(y)

fθk(ϑ)(y)
,

P0(ρ0(Y1) = ∞|U1 = k) < 1 for all 1 ≤ k ≤ m.

Following Self and Liang (1987) we formulate in addition conditions on the third derivatives,

where the derivatives are meant to be taken from the appropriate side, if ϑ is on the

boundary of the parameter space.

Assumption 2.1’ The maps ϑ �→ αjk(ϑ) and ϑ �→ πk(ϑ) for 1 ≤ j, k ≤ m have three

continuous derivatives and the maps ϑ �→ fθk(ϑ)(y) for 1 ≤ k ≤ m and y ∈ Y have three

continuous derivatives.

Assumption 2.2’ Let ϑ = (ϑ1, . . . , ϑd̄). In addition to Assumption 2.2, there exists a

δ > 0 such that for all i, j, l ∈ {
1, . . . , d̄

}
and for all 1 ≤ k ≤ m

E0

[
sup

ϑ∈Bδ(ϑ0)

∣∣∣∣ d3

dϑidϑjdϑl
log fθk(ϑ)(Y1)

∣∣∣∣
]
<∞.

Note that the Assumptions 2.1, 2.2 and 2.1’, 2.2’ are so called Cramér-type conditions and

appear natural from the classical theory of i.i.d. samples (for discussion cf. also Danne-

mann, 2006, p.19). Apart from the classical regularity conditions, i.e. mainly existence

and boundedness of the derivatives of the log densities, van der Vaart (1998) discusses

based on LeCam’s work an alternative condition. Based on the notion of differentiability

in quadratic mean, i.e. for densities pϑ, pϑ+h there exists a function gϑ with E[|gϑ|2] < ∞
such that

Eϑ

[
(
√
pϑ+h/

√
pϑ − 1 − 1/2hgϑ)

2
]

= o(|h|2),
van der Vaart shows that the results from Self and Liang (1987) can be derived from this

condition for i.i.d experiments (van der Vaart, 1998, see Thm. 7.12 and Thm 16.7). How-

ever, extending this concept to dependent data models like HMMs has not been established

in the literature so far.

Assumption 2.3 is not very demanding, as pointed out by Bickel and Ritov (1996), it

is for example violated if the sdfs of two states have distinct supports. However, Douc
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and Matias (2001) and Bickel et al. (2002) give conditions under which results implying

asymptotic normality hold that include this case.

Under the Assumptions 2.1-2.3 and assuming that ϑ0 lies in the interior of Θ̄, the strong

consistency of the MLE and the positive definiteness of the Fisher information matrix

J0 := − lim
n→∞

n−1D2
ϑLn(ϑ0).

Bickel et al. (1998) showed

√
n(ϑ̂− ϑ0)

L−→ N (0,J −1
0 ) P0-weakly. (2.2)

To achieve this Bickel et al. (1998) prove under the presented regularity conditions a central

limit theorem (CLT) for the score:

1√
n
DϑLn(ϑ0)

L−→ N(0,J0) P0-weakly, (2.3)

and a uniform law of large numbers (ULLN) for the Fisher information, i.e. for any strongly

consistent sequence (ϑ̃n)n

1

n
D2
ϑLn(ϑ̃n) → −J0 in P0-probability. (2.4)

For almost sure convergence results for this law of large numbers see Douc and Matias

(2001) and Bickel et al. (2002). After establishing these two lemmas asymptotic normality

of the MLE is just a matter of the standard Taylor expansion technique, since

0 = DϑLn(ϑ̂) = DϑLn(ϑ0) +D2
ϑLn(ϑ̄)(ϑ̂− ϑ0)

with ϑ̄ lying on the line segment [ϑ0, ϑ̂]. This yields

√
n(ϑ̂− ϑ0) = (−n−1D2

ϑLn(ϑ̄))−1
√
n
−1
DϑLn(ϑ0)

= J −1
0

√
n
−1
DϑLn(ϑ0) + oP (1).

by (2.4) and combining this with (2.3) proves (2.2). Note, that if ϑ0 lies on the boundary

of Θ̄ the maximum is not longer necessarily achieved at an inner point of Θ̄ (not even for

large n) such that DϑLn(ϑ̂) = 0 fails and hence (2.2) may not hold.

LR-testing under standard conditions

We call testing problems as under standard conditions, if the parameter space under the

hypothesis Θ̄0 ⊂ Θ̄ is given by a smooth manifold with ϑ0 lying in the interior of Θ̄0 and

Θ̄ (w.r.t. to the relative topologies). For testing the hypothesis

H : ϑ ∈ Θ̄0 against K : ϑ ∈ Θ̄ \ Θ̄0


