
Chapter 2
Preliminaries

2.1 Basic Graph Theory

A graph is a tuple (V, E), where V is a finite set of vertices and E is a set
of edges, which are size-two subsets of V , that is E ⊆ {{u, v} | {u, v} ⊆ V }.
Note that by this definition the edges are not directed and there are no multiple
edges or self-loops, that is, the graphs considered in this thesis are simple and
undirected. The complement of a graph G = (V, E) is the graph Ḡ := (V, Ē),
where Ē := {{u, v} | {u, v} ⊆ V } \E. For a graph G = (V, E), we write V (G) to
denote its vertex set and E(G) to denote its edge set. By default, we use n and m
to denote the number of vertices and edges, respectively, of a given graph. Two
vertices u, v ∈ V are adjacent if {u, v} ∈ E. A vertex v ∈ V and an edge e ∈ E
are incident if v ∈ e.

For a vertex v ∈ V (G), the set NG(v) := {u ∈ V | {u, v} ∈ E} is the set of
neighbors of v. The closed neighborhood of v is defined as NG[v] := NG(v)∪{v}.
For S ⊆ V , the set NG(S) :=

⋃
v∈S N(v) \S is the neighborhood of S. The closed

neighborhood is denoted as NG[S] := NG(S)∪S. If the graph G is clear from the
context, then we also write N(v), N [v], N(S), and N [S] instead of NG(v), NG[v],
NG(S), and NG[S], respectively. The degree of a vertex v is the number of its
neighbors |N(v)|. If every vertex in G has degree at most d, then we say that G
has maximum degree d. For a vertex set S ⊆ V , we write G[S] to denote the graph
induced by S in G, that is, G[S] := (S, {e ∈ E | e ⊆ S}). For a vertex v ∈ V ,
we also write G − v instead of G[V \ {v}] and for a vertex set S ⊆ V we also
write G − S instead of G[V \ S].

A path is a sequence of vertices v1, . . . , vp with {vi, vi+1} ∈ E for all 1 ≤
i < p, where all the vertices vi are distinct. The number of edges of a path
is its length. A cycle is a path with {vp, v1} ∈ E. The girth of a graph is
the length of a shortest cycle in it. A clique is a complete graph, that is, a
graph in which all vertices are pairwise adjacent. A Kn is a clique of n vertices.
The graph K3 is also called triangle. A Pn is a path of n vertices, and Cn is

7

8 2 Preliminaries

a cycle of n vertices. A wheel is a graph W that has a vertex v ∈ V (W) that
is adjacent to all other vertices such that W − v is a cycle. For s ≥ 1, the
graph K1,s := ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is an s-star, or simply star.
The vertex u is the center of the star and the vertices v1, . . . , vs are the leaves
of the star. A ≤s-star is an s′-star with s′ ≤ s and a <s-star is an s′-star
with s′ < s. A graph is connected if there is a path between any two vertices.
For a connected graph G, a cut-vertex is a vertex v ∈ V such that G − v is not
connected. The distance between two vertices u, v is the length of a shortest path
between u and v. The distance between two edges e1, e2 is the smallest distance
between any two vertices u ∈ e1 and v ∈ e2.

Given an undirected graph G = (V, E) and an edge subset E ′ ⊆ E, to sub-
divide the edges E ′ in G means to remove from G all edges in E ′, and then to
add for each edge {u, v} ∈ E ′ a vertex xu,v, making it adjacent to u and v. The
vertices in {xu,v | {u, v} ∈ E ′} are called subdivision vertices.

For a family of graphs H we define V (H) :=
⋃

H∈H V (H) and E(H) :=⋃
H∈H E(H). We say that a graph H ′ is a copy of H if H ′ is isomorphic to H . For

a graph G and a graph H , we say that H ′ is a copy of H in G if H ′ is a subgraph
of G and H ′ is a copy of H . Given two graphs H1 and H2, the intersection of H1

and H2 is defined as V (H1) ∩ V (H2). A packing P of a graph H in a graph G is
a set of pairwise vertex-disjoint copies of H in G.

Matching Basics. Given an undirected graph G = (V, E), an edge subset M ⊆
E is called a matching if the edges in M are pairwise disjoint. A matching M is
maximal if there exists no edge e ∈ (E \ M) such that M ∪ {e} is a matching.
A matching M is maximum if there exists no larger matching. A vertex v ∈ V
is matched if there exists an edge in M that is incident to v. A vertex v ∈ V is
unmatched if it is not matched. An M-alternating path is a path in G that starts
with an unmatched vertex, and then contains, alternately, edges from E \ M
and M . If an M-alternating path ends with an unmatched vertex, then it is
called M-augmenting path.

Graph Properties. A graph property Π is a (possibly infinite) set of graphs.
We also write that a graph G satisfies Π if G ∈ Π. A graph property Π is heredi-
tary if it is closed under deleting vertices, that is, if G ∈ Π, then for any induced
subgraph G′ of G, G′ ∈ Π. A hereditary graph property is non-trivial if it is sat-
isfied by infinitely many graphs and it is not satisfied by infinitely many graphs.
A hereditary graph property is determined by the components if a graph G satis-
fies Π whenever every connected component of G satisfies Π. For any hereditary
property Π there exists a set of “minimal” forbidden induced subgraphs, that is,
forbidden graphs for which every induced subgraph satisfies Π [GHK73]. If Π is a
hereditary property that is determined by the components, then the correspond-
ing set of forbidden induced subgraphs only contains connected graphs.

A graph is planar if it can be embedded in the plane, that is, it can be drawn

2.2 Parameterized Complexity and Fixed-Parameter Algorithms 9

in a plane such that the edges only intersect in their endpoints. Every planar
graph contains a vertex of degree at most five, which is a consequence of Euler’s
formula.

For more about graph theory, we refer to the books by Diestel [Die05] and
West [Wes01].

2.2 Parameterized Complexity and

Fixed-Parameter Algorithms

Since many graph problem are NP-hard, it seems hopeless to solve them exactly
in polynomial time. However, NP-hardness expresses the computational hard-
ness of a problem in the worst case, and there often exist even large instances of
NP-hard problems that can be solved in reasonable time. The reason is that such
instances might contain some structure that can be exploited by an algorithm.
Such structure can often be expressed by a parameter (usually a nonnegative in-
teger), and then one can do a two-dimensional worst-case analysis that measures
the growth of the running time depending on the input size and the parameter.
The hope is that the seemingly unavoidable combinatorial explosion of the run-
ning time can be restricted to the parameter. Then, if the parameter is small,
which is often a reasonable assumption, the problem can be solved efficiently even
on large instances.

For instance, for the Vertex Cover application sketched in Chapter 1 (se-
quence alignment), it is reasonable to assume that the solution is small; otherwise,
one would have to remove too many sequences from the sample, which is an in-
dication that the sample contains too many errors in order to derive meaningful
results. Other types of parameters restrict the structure of the input graph; for
instance, there are problems where the input typically has a tree-like structure
which can be exploited to find an optimal solution (see also Section 2.3.4).

Downey and Fellows [DF99] first describe a formal framework for such a two-
dimensional analysis of problems.

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗×Σ∗, where Σ is
a finite alphabet. The second component is called the parameter of the problem.

Throughout this thesis the parameter is a nonnegative integer, and there-
fore we assume that L ⊆ Σ∗ × N. For (I, k) ∈ L, the two dimensions of the
parameterized complexity analysis are then the input size n := |(I, k)| and the
parameter k. Since in our applications all parameter values are upper-bounded
by |I|, we can simply assume n := |I| in our asymptotic considerations. The
following notion expresses that a parameterized problem can be solved efficiently
for small parameter values.

Definition 2.2. A parameterized problem L is fixed-parameter tractable with
respect to the parameter k if there exists an algorithm that decides in f(k)·poly(n)

10 2 Preliminaries

time whether (I, k) ∈ L, where f is a computable function only depending on k.
The complexity class containing all fixed-parameter tractable problems is called
FPT.

In other words, a parameterized problem is fixed-parameter tractable if it can
be solved in time that is exponential in the parameter, but only polynomial in the
input size. There are several techniques to show that a parameterized problem
is fixed-parameter tractable. In the next section, we introduce some of the most
important ones used in this thesis, like problem kernelization (Section 2.3.1),
bounded search trees (Section 2.3.2), iterative compression (Section 2.3.3), and
dynamic programming on tree decompositions (Section 2.3.4). There also exist
parameterized problems that are likely to be not fixed-parameter tractable. Anal-
ogously to the concept of NP-hardness, Downey and Fellows [DF99] developed
a framework containing reduction and completeness notions in order to show
hardness of parameterized problems. See Section 2.3.5 for more details.

For a more detailed introduction to parameterized algorithmics and parame-
terized complexity theory we refer to the books by Downey and Fellows [DF99],
Flum and Grohe [FG06], and Niedermeier [Nie06].

2.3 Basic Fixed-Parameter Techniques

In this section, we outline some of the most important techniques in the field of
fixed-parameter algorithmics that are applied in this thesis. Concerning the first
three techniques, see also a recent survey by Hüffner et al. [HNW08] for a more
detailed description with many examples.

2.3.1 Problem Kernelization

To solve NP-hard problems, polynomial-time preprocessing is a natural approach.
The main idea is to use preprocessing to remove the “easy” parts of the input in
order to obtain the computationally hard “core” of the instance. One important
requirement of such preprocessing in our context is that they preserve the ability
to solve the problem to optimality, that is, that an optimal solution for the
reduced instance can be used to derive an optimal solution for the input instance.

In the classic one-dimensional analysis of algorithms, it is difficult to measure
the quality of such an “exact” polynomial-time preprocessing, since any prepro-
cessing step with provable effectiveness (that is, a guarantee that the preprocess-
ing step will reduce the instance) could be applied repeatedly until the remaining
instance is empty, which would imply P = NP. The picture changes completely
if we consider parameterized problems. Here, the parameter can be used to show
provable size bounds of the instance after applying the preprocessing algorithm.
Such a reduced instance is called problem kernel.

2.3 Basic Fixed-Parameter Techniques 11

Definition 2.3. Let L ⊆ Σ∗ × N be a parameterized problem. A reduction to
a problem kernel or kernelization is a polynomial-time transformation of an in-
stance (I, k) to an instance (I ′, k′) such that (I, k) ∈ L if any only if (I ′, k′) ∈
L, |I ′| ≤ g(k) for some arbitrary computable function g depending only on k,
and k′ ≤ k.

Thus, a problem kernelization is an algorithm that replaces the input instance
by an equivalent instance whose size depends only on k and not on the input size
anymore. The size of the problem kernel is |I ′|. However, for many graph prob-
lems, the kernel size is often stated with respect to the number of vertices only.
Moreover, a problem kernel with O(k) vertices is often called “linear problem
kernel”, although it might contain O(k2) edges. In this thesis, most of the ker-
nelization results are stated with respect to the number of vertices.

A problem kernelization is often described via data reduction rules. A data
reduction rule is an algorithm that replaces in polynomial time an instance (I, k)
with an instance (I ′, k′), where |I ′| < |I|, such that (I, k) ∈ L if and only
if (I ′, k′) ∈ L. A problem instance to which none of a given set of reduction
rules applies is called reduced with respect to these rules.

For an example of a problem kernel, consider the parameterized version of
Vertex Cover, where the size of a vertex cover is bounded by the parameter k.
If there is a vertex v of degree at least k + 1, then one may assume that v is in
the vertex cover, since otherwise all neighbors of v have to be in the cover, which
would be more than k. Therefore, as a first data reduction rule, we add all vertices
with at least k+1 neighbors to the vertex cover, and for each vertex that is added,
we decrease the parameter k by one. After that, a second data reduction rule
deletes all degree-0 vertices, which is obviously correct. If the remaining graph
is a yes-instance, that is, there exists a vertex cover S of size at most k, then
the remaining graph contains at most k2 edges and at most k + k2 vertices, since
each vertex in S has a most k neighbors, and there are no edges between vertices
in N(S). Therefore, a last data reduction rule returns the reduced graph if it
contains at most k2 edges and at most k+k2 vertices; otherwise, it returns a trivial
no-instance. The resulting instance is a O(k2)-size problem kernel for Vertex

Cover with respect to the parameter k. The currently best problem kernel for
Vertex Cover has at most 2k vertices [NT75, CKJ01]. This kernelization has
found practical applications in computational biology, where it helps to make
problem instances small enough such that they can be solved exactly [AFLS07].

It is not difficult to see that any parameterized problem that admits a problem
kernel is fixed-parameter tractable. The corresponding fixed-parameter algorithm
simply solves the problem by brute force on the problem kernel. The contrary is
also true:

Theorem 2.1 ([CCDF97]). For every parameterized problem that is fixed-para-
meter tractable there exists a problem kernel and vice versa.

Unfortunately, the theorem cannot be used to get an efficient fixed-parameter

12 2 Preliminaries

algorithm from a problem kernel or a small (e.g., polynomial size) problem kernel
from a fixed-parameter algorithm. It is mainly used to establish fixed-parameter
tractability or the existence of a problem kernel.

Problem kernelization is a very powerful tool to show the effectiveness of
data reduction rules. Moreover, since it preserves the ability to solve the problem
exactly, virtually any method can be used to solve the problem on the kernel (like
fixed-parameter algorithms, but also approximation and heuristic algorithms).
However, problem kernelization is not restricted to serve as a pure preprocessing
step. There is theoretical [NR00] and practical [ALSS06] evidence that it can
be efficiently interleaved with the main solving algorithm (in particular bounded
search trees, see Section 2.3.2). For instance, our experimental results in Chap-
ter 9 are heavily based on such methods, achieving speedups of several orders of
magnitude in practice.

A “success story” for kernelization is Cluster Editing, the problem of
adding and deleting at most k edges of a graph such that every connected compo-
nent becomes a clique. Here, a first problem kernel had O(k2) vertices [GGHN05],
where k is the number of allowed editing operations. The kernelization has been
gradually improved [FLRS07, PdSS09], and the best-known kernel size is now 4k
vertices [Guo09]. Kernelization algorithms for Cluster Editing have also found
applications in practice [BBK09, DLL+06]. As another example, for the (undi-
rected) Feedback Vertex Set problem, a kernel of O(k3) vertices [Bod07] has
recently been improved to O(k2) vertices [Tho09], where k is the feedback vertex
set number of the given graph.

For more about kernelization refer to a survey by Guo and Niedermeier [GN07a].

2.3.2 Bounded Search Trees

It is usually inevitable to use some exponential-time method in order to solve
an NP-hard problem to optimality. A standard way to do so is a systematic
exhaustive search, which can be organized in a tree-like fashion. The basic idea is
to find in polynomial-time a small part of the input such that at least one element
of that part has to be in an optimal solution. We then branch into several cases
of choosing an element of the small part to be in the solution, and then proceed
recursively until a solution is found. A search tree corresponds to the recursive
calls of such an algorithm. If we can bound the number of cases in each search tree
node as well as the height of the tree (the maximum number of nested recursive
calls), then we obtain a fixed-parameter algorithm. The number of recursive
calls is the number of nodes in the according tree. This number is governed by
linear recurrences with constant coefficients. These can be solved by standard
mathematical methods [Nie06]. If the algorithm solves a problem instance of
size s and calls itself recursively for problem instances of sizes s − d1, . . . , s − di,
then (d1, . . . , di) is called the branching vector of this recursion. It corresponds
to the recurrence Ts = Ts−d1

+ · · ·+Ts−di
for the asymptotic size Ts of the overall

search tree.

