
3

2 Metamaterials: Fundamental
Revolution and Potential Future

Materials’ properties have troubled scientists since old ages [1]. From an electromagnetic out-
look, researchers have had different concerns about materials’ parameters and have looked at
the problem from different viewpoints. While at microwave frequencies the relative dielectric
permittivity is of interest, in optics the refractive index (n) is the important parameter. Usual
optical materials have a positive dielectric permittivity (ε) and magnetic permeability (μ), and
n could easily be taken as √εμ without any problems. Although it was realized that the refrac-
tive index would have to be a complex quantity to account for absorption and even a tensor to
describe anisotropic materials, the question of the sign of the refractive index did not arise until
the late sixties of the last century [2].

In 1968, Veselago studied analytically a medium that has both negative ε and negative μ [3].
He deduced that the medium possesses a negative refractive index. This means the negative
square root n = −√

εμ, should be chosen. His result remained an academic curiosity for a long
time, as neither real nor artificial materials with simultaneously negative ε and μ were available.

However, in the last few years, theoretical studies [4, 5] for specific engineered media
whose ε and μ could become negative in certain frequency ranges were developed experimen-
tally [6, 7], and this has brought Veselago’s result into the limelight. These materials have been
called metamaterials (MTMs). It means the materials which are not available in nature. More-
over, negative index media (NIM), double negative media (DNG), backward media, and left-
handed media (LHM) have been named for the media when both ε and μ are negative. However,
nowadays metamaterials are considered to be any engineered structures with unusual properties
not readily available in nature [1]. Hence, negative permittivity, negative permeability, less-
than-one refractive index, ε and/or μ near zero, graded index and bi-anisotropy materials are
just some representative examples of metamaterials [8]. This field has become a hot topic of
scientific research and debate over the past nine years. This chapter will review the early steps
of the subject, and then give an overview of the potential applications.

2.1 Metamaterials - The Story so Far

2.1.1 How the Subject Started?

For ordinary materials both the relative permittivity and permeability are positive values and
larger than one. These materials have been identified as right-handed media (RHM) or dou-
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Figure 2.1: Material classification.

ble positive media (DPS). They are represented by the right-top quadrant of Fig. 2.1. In the
following, some of the historical milestones for the other quadrants will be discussed.

As in any scientific field, metamaterials have required simultaneous efforts over the last
century. It had a long gestation period and many contributors. The first study of general prop-
erties of wave propagation in negative index medium, represented by the left-bottom quadrant
of Fig. 2.1, has usually been attributed to the work of Russian physicist V. G. Veselago. How-
ever, the subject has been studied since at least 1904 [9]. Some historical milestones regarding
backward waves and metamaterials have been made over the last century. Fig. 2.2 shows the
names versus years for some known researchers who contributed effectively to make that. H.
Lamb in 1904 may have been the first person to propose the existence of backward waves. The
phase of these waves moves in the direction opposite from that of the energy flow [10]. Lamb´s
examples involved mechanical systems rather than electromagnetic waves. Apparently, the first
person who discussed the backward waves in electromagnetism was Schuster in 1904 [11].
Schuster briefly annotates Lamb´s work and gives a speculative discussion of its implications
for optical refraction. He cited the fact that within the absorption band of, for example, sodium
vapor a backward wave will propagate. He was pessimistic about the applications of negative
refraction because of the high absorption region in which the dispersion is reversed. Meanwhile,
H.C. Pocklington showed in 1905 that in a specific backward-wave medium, the output wave
from a suddenly activated source has group velocity which is directed away from the source,
while its velocity moves toward the source [12].

After about half a century, Mandelshtam made the earliest known speculation on negative
refraction [13]. He noticed that given two media, for a given incidence angle θ1 of the wave
at the interface, Snell’s law admits mathematically two solutions: not only the conventional
solution θ2 but also the "unusual" solution π-θ2. Although we note that he made no reference
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Figure 2.2: Main historical milestones of metamaterials.

to negative refraction, it is obvious that his argument refers to the same phenomenon. In 1945,
with reference to Lamb, Mandelshtam presented physical examples of structures supporting
waves with "negative group velocity". Such structures exhibit periodically varying effective
permittivity [14]. From the above reference with Mandelshtam, it is concluded that Veselago
was not the first to postulate the existence of LH media in [3]. However, it is an established
fact that he was the first to conduct a systematic study of these media and to predict their
most fundamental properties. Moreover, Pendry’s contributions have awakened scientists to the
aforementioned physical phenomenon [4, 5, 15].

2.1.2 Wave Propagation in Left-Handed Media

Let us start with the wave equation to show wave propagation in left-handed media [3]:
(
∇2 − n2

c2
∂2

∂t2

)
ψ = 0 (2.1)

where n is the refractive index, c is the velocity of light in vacuum, and n2/c2 = εμ. It is
anticipated then that lossless left-handed media with n = −1 must be transparent [16]. Consid-
ering the above equation, we can interestingly conclude that solutions to equation (2.1) will re-
main unchanged after a simultaneous change of the signs of ε and μ. However, when Maxwell’s
first-order differential equations are explicitly considered,

∇× E = −jwμH (2.2)

∇× H = jwεE (2.3)

where E is the electric field and H is the magnetic field, it becomes obvious that these
solutions are quite different. For plane-wave fields, the above equations reduced to:

k × E = wμH (2.4)

k × H = −wεE (2.5)

where k is the wave vector. Therefore, for positive ε and μ, E, H, and k form a right-handed
system of vectors as shown in Fig. 2.3(a). However, if ε<0 and μ< 0, then equations (2.4)
and (2.5) can be rewritten as:
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Figure 2.3: Representation of the three vectors E, H and k for a right-handed medium (RHM)
(a) and left-handed medium (LHM) (b).

k × E = −w|μ|H (2.6)

k × H = w|ε|E (2.7)

showing that E, H, and k now form a left-handed triplet, as illustrated in Fig. 2.3(b). In fact, this
result is the original reason for the denomination of negative ε and μ, media as "left-handed"
media [3].

The main physical implication of the aforementioned analysis is backward-wave propaga-
tion. For this reason, the term backward media has been also proposed for media with negative
ε and μ [17]. In fact, the direction of the time-averaged flux of energy is determined by the real
part of the Poynting vector,

S =
1

2
E × H∗ (2.8)

where ∗ denotes the complex conjugate, which is not influenced by a simultaneous change
of sign of ε and μ. Thus, E, H, and S still form a right-handed triplet in a left-handed medium.
Hence, energy and wavefronts travel in opposite directions in such media. Backward-wave
propagation in homogeneous isotropic media seems to be a unique property of left-handed
media. The phenomena of forward- and backward-wave propagation are demonstrated in Fig.
2.4(a) and Fig. 2.4(b) for a slab of media with refractive index of 1 and -1, respectively. There
is free space before and after the media. The backward wave is evident from the electric field
distribution inside the media in Fig. 2.4b. So, the wave vector is opposite of the pointing vector.
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Figure 2.4: Forward- (a) and backward- (b) wave demonstration using a slab of material with ε
and μ equal 1 and -1, respectively.

2.1.3 Negative Permittivity

It is not secret that higher permittivity low loss materials were needed during the Second World
War for radar technology. Therefore, there were great efforts made to develop artificial di-
electrics. One of the structures studied was an array of thin wires, which were shown to have
an effective plasma frequency [18]. Later, Rotman was motivated to simulate plasmas in order
to have more insight into problems such as the effect of rocket exhaust upon the radiation of
re-entry vehicle antennas and his paper [19] was a result of that investigation. About quarter of
a century later, Pendry et al. obtained similar conclusions [4]. The idea is based on having an
array of these wires as shown in Fig. 2.5(a) with an applied electric field along the axes of the
wires.

It has been shown that the behavior of an array of thin metallic wires can be explained
by the plasma resonance in a metal [4, 20]. The frequency response of a metal to incident
electromagnetic radiation is due to the plasma resonance of the electron gas. The following
expression describes this behavior in an ideal form:

Figure 2.5: (a) Wire medium with an applied electric field along the axes of the wires (b) real
part of εr versus frequency.
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εmetal = 1 − w2

pe

w2
(2.9)

where wpe is the plasma frequency, which is given by:

w2

pe =
ne2

ε0me

(2.10)

where, n: electron density of the gas, me: electron mass, e: electron charge. An analytical
approximation of the thin wire medium shows that:

neff = n
πr2

a2
(2.11)

meff =
μoπr

2e2n

2π
ln

(a
r

)
(2.12)

where neff and meff are the average electron density and the effective electron mass, respec-
tively. r and a are the wire radius and the lattice period, respectively. Simple substitutions give
the plasma frequency:

w2

pe =
2πc2

0

a2ln
(

a
r

) (2.13)

By applying equation 2.13, a plot of epsilon for a thin wire medium can be calculated,
as is shown in Fig. 2.5(b). The graph explains how epsilon goes from negative values in the
lower frequency range (and hence, only evanescent modes are allowed to propagate), up to
positive values in the higher frequency range, through the plasma frequency fpe. It is also
interesting to note that the plasma frequency can be lowered by increasing the lattice constant
(a) of the medium. Fig. 2.6 shows a sweep for four different ratios for a/r. As the ratio
increases, the plasma frequency decreases. This is an interesting property of this medium,
because the operating frequency range of the final metamaterial configuration is limited by the
size of this metallic array. Researchers have been attracted by this kind of thin wire arrays.
They have envisaged these types of structures with plasmonic response for the realization of
sub-wavelength antennas with enhanced radiation properties [21].

2.1.4 Negative Permeability

Interestingly, unknown to Veselago, the existence of negative permeability had already been
shown in such material by Thompson [22] a decade earlier. However, Pendry proposed a novel
type of particle called the Split Ring Resonator (SRR) in the late 90´s [5]. This was a major step
in the implementation of an LHM. The resonator consists of a pair of concentric rings, with slits
etched in opposite sides. By adequately exciting the SRR with a time varying magnetic field
oriented in the axial direction of the particle, a strong magnetic behavior can be observed. A
highly resonant response with frequency can be observed by studying the equivalent magnetic
permeability value. Moreover, a frequency range will exist in which μ will exhibit a very high
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Figure 2.6: Analytical calculation of epsilon for a thin wire medium when a/r ratio is varied.

negative value (close to the quasi-static frequency) up to where it reaches a value higher than 0
(magnetic plasma frequency).

Pendry started his study by taken two concentric cylinders with a slit in each one, in op-
position one to the other. A schematic of the resulting structure is shown in Fig. 2.7. In this
case, currents are forbidden to move in any of the cylinders. A very high capacitive value is
a consequence of that, which enables displacement current to flow. The value of the effective
magnetic permeability is given by:

μeff = 1 − F

1 + i 2σ
wrμ0

− 3

π2μ0w2Cr3

(2.14)

where F is the fractional volume, given by πr2/a2 and C is the capacitance per unit area be-
tween both metallic sheets of the cylinders, given by C = ε0/d = 1/dc2

0
μ0. Fig. 2.8 presents

the SRRs medium and the analytical calculation of Eq. (2.14) for the effective magnetic perme-
ability of a medium composed by SRR cylinders. It shows the μeff versus frequency.

Figure 2.7: Top-view of split ring resonator cylinder structure.


