<u>ABKÜRZUNGSVERZEICHNIS</u>		V
_		
1 E	INLEITUNG	1
	Name and Grands	
	HERBIZID SAFENER	3
1.1.1	DER SAFENER WIRKMECHANISMUS	5
1.1.2	DIE SAFENER MEFENPYR-DIETHYL UND ISOXADIFEN-ETHYL	8
1.1.3	GLUTATHION-S-TRANSFERASEN	11
1.2	ZIELSETZUNG DER ARBEIT	13
2 <u>M</u>	ATERIAL UND METHODEN	15
2.1	Material	15
2.1.1	GERÄTE UND VERBRAUCHSMATERIALIEN	15
2.1.2	CHEMIKALIEN	16
2.1.3	Enzyme	16
2.1.4	REAKTIONS- UND AUFREINIGUNGSSYSTEME	17
2.1.5	PFLANZENMATERIAL	18
2.1.6	BAKTERIENSTÄMME	18
2.1.7	VEKTOREN	19
2.2	ANGEWANDTE METHODEN	20
2.2.1	VERWENDETE SOFTWARE UND DATENBANKEN	20
2.2.2	STERILISATION	20
2.2.3	KULTIVIERUNG UND TRANSFORMATION VON E.COLI	21
2.2.4	KULTIVIERUNG UND TRANSFORMATION VON A. TUMEFACIENS	22
2.2.5	KULTIVIERUNG UND TRANSFORMATION VON ARABIDOPSIS THALIANA	23
2.2.6	Präparation und Analyse von Nukleinsäuren	24
2.2.7	KLONIERUNG UND PLASMIDKONSTRUKTION	30
2.2.8	APPLIKATIONSVERSUCHE	33
2.2.9	REPORTERGEN TESTS	33
2.2.10	DIE CHROMATIN IMMUNO PRÄZIPITATION (CHIP)	35
2.2.11	MICROARRAY EXPERIMENTE	42
2.2.12	PROBENAUFARBEITUNG FÜR DIE MULTIPLEX GASCHROMATOGRAPHY-	TANDEM MASS
SPECT	ROMETRY (GC-MS/MS)	47
2.2.13	Auswertung der Microarray Daten	47

<u>3</u> <u>E</u>	:KGEBNI55E	<u> </u>
3.1	INDUZIERBARKEIT DES IN2.1-PROMOTORS DURCH VERSCHIEDENE SUBSTANZEN	50
3.2	CIS AKTIVE ELEMENTE DES IN2.1-PROMOTORS	52
3.2.1	PROMOTOR DELETIONSANALYSE	52
3.2.2	DATENBANKSUCHE NACH CIS-AKTIVEN ELEMENTEN	54
3.2.3	Induzierbarkeit des $In2.1 \Delta ocs$ -Promotors	57
3.2.4	MINIMALPROMOTER MIT OCS ELEMENT	60
3.3	REGULATION DES IN2.1-PROMOTORS DURCH TGA-TRANSKRIPTIONSFAKTOREN	61
3.3.1	BINDUNG VON TGA2/5 AN DEN IN2.1-PROMOTOR	61
3.3.2	Induzierbarkeit des $P_{In2.1}$:GUS-Konstrukts in der $4\tau GA$ Mutante	65
3.4	REGULATION DES IN2.1-PROMOTORS DURCH SALIZYLSÄURE	66
3.4.1	Induzierbarkeit des $P_{In2.1}$: GUS-Konstrukts in der NahG und sid 2 - 2 Mutante	66
3.4.2	Induzierbarkeit des $P_{In2.1}$: GUS- $Konstrukts$ in der $SA11-1$ Mutante	70
3.5	EINFLUSS DER SAFENER DEN ENDOGENEN SALIZYLSÄUREGEHALT	72
3.6	INDUZIERBARKEIT VON PR1 DURCH SAFENER UND DICHLORSALIZYLSÄURE	75
3.7	SAFENER INDUZIERTE GENEXPRESSION IN ARABIDOPSIS	78
3.7.1	QUALITÄT DES GENEXPRESSIONSEXPERIMENTS	79
3.7.2	IDENTIFIZIERUNG DIFFERENZIELL EXPRIMIERTER GENE	80
3.7.3	KATEGORISIERUNG DER DIFFERENZIELL EXPRIMIERTEN GENE	81
3.7.4	REGULATION DER SAFENERINDUZIERTEN GSTS	84
3.7.5	TGA-Transkriptionsfaktor abhängige Safenerinduktion	87
3.7.6	SALIZYLSÄURE ABHÄNGIGE SAFENER INDUKTION	88
3.8	SCREENINGSYSTEM FÜR SAFENERSIGNALWEG MUTANTEN	89
4 [DISKUSSION	94
4.1	SCREENINGSYSTEM FÜR SAFENERSIGNALWEG MUTANTEN	94
4.2	INDUZIERBARKEIT DES IN2.1-PROMOTORS DURCH VERSCHIEDENE SAFENER UND	
SALI	ZYLSÄURE	95
4.3	CHARAKTERISIERUNG DES IN2.1-PROMOTORS	98
4.3.1	EIN 100 BP-SEQUENZABSCHNITT MIT ZWEI AS-1-ELEMENTEN IST WICHTIG FÜR DIE	
SAFE	ENERINDUZIERBARKEIT DES IN2.1-PROMOTORS	98
4.3.2	DIE DELETION DES IN2.1-PROMOTOR -406 OCS-ELEMENTS FÜHRT ZU EINER	
VERN	MINDERTEN SAFENERINDUZIERBARKEIT	101
4.3.3	Funktionalität des -406 ocs-Elements	102
4.4	TGA-FAKTOR ABHÄNGIGE INDUKTION DES IN2.1-PROMOTORS	103

Inhaltsverzeichnis

4.4.1 TGA-Transkriptionsfaktoren	103
4.4.2 <i>IN VIVO</i> BINDUNG VON TGA2 UND/ODER TGA5 AN DEN <i>IN</i> 2.1-PROMOTOR (CHI	(P) 105
4.4.3 SAFENERINDUZIERBARKEIT DES <i>IN2.1-</i> PROMOTORS IN DER 4TGA MUTANTE (70	GA2/3/5/6,
KAPITEL 3.3.2)	107
4.5 NPR1-Unabhängigkeit des Safenersignalweges	108
4.5.1 NPR1, SCHLÜSSELELEMENT DER SAR	108
4.5.2 NPR1 unabhängige Induktion des <i>In2.1-</i> Promotors	109
4.6 SALIZYLSÄURE-ABHÄNGIGKEIT DER IN2.1-PROMOTORAKTIVITÄT	109
4.6.1 Salizylsäurebiosynthese	110
4.6.2 INDUZIERBARKEIT DES IN2.1-PROMOTORS IN SA-BIOSYNTHESEMUTANTEN	112
4.7 EINFLUSS DER SAFENER AUF DEN INTERNEN SALIZYLSÄURE GEHALT	113
4.8 PR1-INDUKTION DURCH SAFENER	114
4.9 SAFENER INDUZIERBARE GENEXPRESSION IN ARABIDOPSIS	115
4.9.1 DIFFERENZIELLE GENREGULATION IN COLO UND NAHG	116
4.9.2 INDUKTION VON GENEN DES DETOXIFIZIERUNGSSYSTEMS	117
4.9.3 VERGLEICH DER SAFENER UND SALIZYLSÄURE INDUZIERTEN GENEXPRESSION	122
4.9.4 MODELL DES SAFENERSIGNALWEGES	126
5 ZUSAMMENFASSUNG UND ABSTRACT	138
<u> </u>	100
5.1 ZUSAMMENFASSUNG	138
5.2 ABSTRACT	141
6 LITERATURVERZEICHNIS	144
7 ANHANG	176
7.1 PRIMERSEQUENZEN	176
7.2 VEKTORKARTEN	178
7.2.1 DER VEKTOR PBIN19	178
7.2.2 DER VEKTOR PBCVDEAC	178
7.2.3 DER VEKTOR PHOEDEAC	179
7.2.4 DER VEKTOR PB2ACK3	179
7.2.5 DER VEKTOR PBGW	180
7.2.6 DER VEKTOR PGREEN	180
7.3 PROMOTORSEQUENZEN	181
7 3 1 Der <i>In</i> 2 1-Promotor	181

Inhaltsverzeichnis

7.3.2	DER 20CS-IN2.1-A9-PROMOTOR	182
7.4	ANLAGEN ZUM GENEXPRESSIONSEXPERIMENT	183
7.4.1	INDUZIERTE DETOXIFIZIERUNGS-GENE (GSTs, GTs, P450s)	183
7.4.2	INDUZIERTE WRKY-TRANSKRIPTIONSFAKTOREN	187
7.4.3	GENE DIE ALS ANTWORT AUF EINEN SALIZYLSÄURE STIMULUS UND	
MEFE	NPYR/ISOXADIFEN REAGIEREN (GO ANNOTATION, FISHER'S EXACT TEST)	188
7.4.4	Früh SA- und Safenerinduzierbare Gene	189
7.4.5	SAFENERINDUKTION VON GENEN MIT AS-1-ELEMENT	190
7.4.6	SAFENERINDUKTION VON SCL14 ZIELGENEN	191
7.4.7	GENE DIE DURCH PPA1 UND SAFENER INDUZIERT WERDEN	192
7.4.8	GENE DIE DURCH PPA1 UND SAFENER REPRIMIERT WERDEN	194
7.4.9	GENE DIE DURCH 2,4-D UND SAFENER INDUZIERT WERDEN	195
7.4.10	GENE DIE DURCH 2,4-D UND SAFENER REPRIMIERT WERDEN	197
7.4.11	GENE DIE SAFENERINDUZIERT SIND UND MIT DEM JASMONSÄURESIGNALWEG	ZU TUN
HABEN	N	198
<u>DANI</u>	KSAGUNG	200
EIDE:	SSTATTLICHE ERKLÄRUNG	201
<u>LEBE</u>	ENSLAUF	202