Inhaltsverzeichnis

Zusammenfassung						
Inhaltsverzeichnis viii						
1	Einl	eitung	1			
2	Feld 2.1 2.2 2.3 2.4	emissionKlassische FeldemissionFeldemission aus HalbleiternEinflussfaktoren2.3.1Geometrie2.3.2Äußere Einflüsse2.3.3Thermische EffekteTechnische Anwendung	5 8 12 12 16 18 22			
3	Fiel 3.1 3.2 3.3 3.4 3.5	d Emitter Arrays Ungated Field Emitter Arrays Gated Field Emitter Arrays Spindt-type-Emitter Geätzte Emitter Kohlenstoffnanoröhren und andere Emitter	25 25 26 27 28 30			
4	Stab 4.1 4.2 4.3 4.4	Dotierung des FeldemissionsstromsDotierungTriodenstrukturResistive BegrenzungExterne Beschaltung durch MOSFETs4.4.1Funktionsweise des MOSFETs4.4.2Extern verbundene MOSFETs4.4.3MOSFET-integrierte Emitter	 33 34 36 38 39 41 41 			
5	Steu 5.1 5.2 5.3	I erwirkung von MOSFETs für Feldemissionsanwendungen Test-Device MOS-Kapazität	49 49 51 52			

	5.4	Technologische Umsetzung	53		
	5.5	Elektrische Charakterisierung	55		
6	Untersuchungen an Feldemissionsspitzen				
	6.1	Funktionsweise und Aufbau	59		
	6.2	Simulationen	60		
	6.3	Ätztechniken	65		
		6.3.1 Anisotropes nasschemisches Ätzen	66		
		6.3.2 Trockenätzen	74		
	6.4	Abscheidung von Feldemittern	78		
	011	6.4.1 Kohlenstoffbasierte EBID-Emitter	78		
		6.4.2 Metallische EBID-Emitter	80		
	6.5	Extraktionsstrukturen	81		
	0.0	651 Freitragende Extraktoren	82		
		652 Selbstiustierende Extraktoren	90		
	66	Frmittlung des Snitzenradius	95		
	0.0	661 Resterelektronenmikroskonje	95		
		6.6.2 Rechnerische Extraction aus der Kennlinie	97		
		0.0.2 Rechilensche Extraktion aus der Rennline)1		
7	MO	SFET-integrierte Feldemissionsspitzen	99		
	7.1	Funktionsweise und Aufbau	99		
	7.2	Definition des Standardprozesses	100		
	7.3	Simulationen	102		
	7.4	Technologische Varianten	106		
	7.5	Elektrische Charakterisierung	110		
		7.5.1 Extern verbundene MOSFETs	110		
		7.5.2 MOSFET-integrierte Emitter	111		
8	Disl	kussion - Stärken und Schwächen der Konzepte	115		
~		1 1• 1	110		
9	Aus		119		
	9.1		119		
	9.2	Praktischer Einsatz multipler Elektronenstrahlen	120		
A	Mas	ken-Layout	121		
в	Sim	ulations-Quelltext für das Emitter-Basismodell	125		
-	0				
Fo	Formelzeichen und Abkürzungen				
Ve	rzeic	hnisse	134		
	Abb	ildungen	134		
	Tabe	ellen	135		
	Lite	ratur	137		
_	_				
Da	Danksagung 1				

x_____

Kapitel 1 Einleitung

Die Halbleiterindustrie wird getrieben von der Suche nach neuen Techniken zur Miniaturisierung der Strukturgrößen ihrer integrierten Bauelemente. Schon seit Anbeginn der Erfolgsgeschichte integrierter Schaltkreise und medienwirksam festgezurrt in Gordon E. Moores Beobachtungen [Moo65] sieht die Branche ihre Zukunft darin, immer mehr Funktionalität auf immer kleinerer Chipfläche unterzubringen. Doch die Möglichkeit dazu steht und fällt mit der Fähigkeit, diese Strukturen in der Größenordnung einiger Nanometer zuverlässig, in vertretbarer Zeit und möglichst preisgünstig auf der zu prozessierenden Halbleiterscheibe abbilden zu können.

Die heute übliche Vorgehensweise bedient sich optischer Lithographie mit Phasenschiebermasken und Projektionsbelichtung. Dabei wird eine Chrommaske, die die auf den Wafer aufzubringenden Strukturen typischerweise um einen Faktor 5 bis 10 vergrößert enthält, durch Laserlicht (ArF-Laser, Wellenlänge 193 nm oder F2-Laser, Wellenlänge 157 nm) über ein Linsensystem verkleinert abgebildet. Doch Beugungseffekte an den Maskenstrukturen begrenzen den zukünftigen Einsatz und lassen die Kosten für entsprechende Ausrüstung und Masken kontinuierlich steigen. Erschwerend kommt hinzu, dass nur noch wenige Materialien für kürzere Lichtwellenlängen transparent sind und so als Maskenträger in Frage kommen.

Auch wenn die Industrie optimistisch ist, noch einige Generationen mit den gewohnten Abläufen arbeiten zu können, beschäftigen sich vielerlei Forschungsarbeiten derzeit mit der Suche nach geeigneten Alternativen. Der jüngst eingeführte Weg der Immersionslithographie [Gos07] beim 45- bzw. 32 nm Technologieknoten dehnt die Verwendung konventioneller optischer Lithographie noch ein weiteres Mal aus. Nach aktuellem Stand der Technik erscheint ein vorläufiger Weg zur Lösung die Nutzung von extrem ultravioletter (EUV)-Strahlung in Verbindung mit Reflexionsmasken, wie sie für die Nutzung in der Massenfertigung ab dem 22 nm Knoten vorgesehen war [Wu07], zu sein. Ebenso erfolgversprechend zeichnet sich das Konzept der Doppelbelichtung unter verschiedenen Belichtungsbedingungen ohne zwischenzeitliche Entwicklung des Photoresists, wie beispielsweise in [Jah08] dargestellt. Auf lange Sicht scheint dagegen in der Elektronenlithographie der zukunfts-