Table of content

1.	Intr	oduction	1
2.	Stat	te of the art	5
2.	1.	Applications	5
2.	2.	9-12% Cr steels	6
2.	3.	Metallurgy	7
2.	4.	Precipitates	11
2.	5.	Creep fundamentals	17
2.	6.	Strengthening mechanisms	22
3. Materials and methods			
3.	1.	Materials	24
3.	2.	Heat-treatment	25
3.	3.	Creep testing	26
3.	4.	Optical metallography and hardness	27
3.	5.	Scanning electron microscopy	27
3.	6.	Transmission electron microscopy	30
4. Res		ults	34
4.	1.	Creep data	34
4.	2.	Creep cavities and inclusions	36
4.	3.	Evolution of hardness	40
4.	4.	Evolution of subgrain	41
4.	5.	Evolution of misorientation	44
4.	6.	Evolution of dislocations density	49
4.	7.	Identification of precipitates	53
4.	8.	Evolution of precipitate parameters	57
4.	9.	Chemical evolution of precipitates	62
5.	Disc	cussion	65
5.	1.	Creep data	65
5.	2.	Creep cavities and inclusions	65
5.	3.	Evolution of hardness	65
5.	4.	Evolution of subgrain	66
5.	5.	Evolution of low angle boundaries	70
5.	6.	Evolution of dislocation density	70
5.	7.	Stability of precipitates	71
5.	8.	Chemical evolution of precipitates	74
5.	9.	Laves phase nucleation and growth	75
6.	Cor	nclusions	84

List of Figures

Figure 1-1: Heat rate of steam power plants in Germany as a function of steam parameters. 1
Figure 1-2: International research and development projects on steam power plants [17] 2
Figure 2-1: Schematic illustration and photographs of a fossil fired boiler and their typical
materials5
Figure 2-2: Schematic illustration of microstructure of tempered martensite 9-12%Cr creep-
resistant steel contains precipitates on the internal interfaces
Figure 2-3: Schematic of crystal structure of Cr ₂₃ C ₆ carbide with fcc structure
Figure 2-4: Schematic of crystal structure of VC carbide with fcc structure
Figure 2-5: Schematic of crystal structure of Fe_2W carbide with hcp structure
Figure 2-6: Schematic of Ostwald ripening mechanism in which larger particles grow up while
small particles dissolving into matrix
Figure 2-7: Creep curve of an engineering steel under constant tensile load and constant
temperature
Figure 3-1: Schematic of the position and direction of creep specimens taken from
X20CrMoV12-1 pipe
Figure 3-2: Continuous cooling transformation (CCT) diagram of X20CrMoV12-1 steel 25
Figure 3-3: a) As-received specimen taken from a pipe, b) creep ruptured specimen after
139971 hours at 823 K under 120 MPa26
139971 hours at 823 K under 120 MPa26 Figure 3-4: Schematic of EBSD technique
139971 hours at 823 K under 120 MPa
139971 hours at 823 K under 120 MPa
139971 hours at 823 K under 120 MPa
139971 hours at 823 K under 120 MPa
139971 hours at 823 K under 120 MPa
139971 hours at 823 K under 120 MPa.26Figure 3-4: Schematic of EBSD technique.28Figure 3-5: Diagram of the bright-field, annular dark-field, and high-angle annular dark-field30functions of a STEM.30Figure 3-6: Procedure to identify and evaluate the precipitates in HAADF—STEM images.32Figure 3-7: Schematic figure illustrating the parameters which were retrieved from the TEM33Figure 4-1: Diagram of strain vs. logarithm of time of specimens with 0.5, 1.0, and 1.6% strain33
139971 hours at 823 K under 120 MPa.26Figure 3-4: Schematic of EBSD technique.28Figure 3-5: Diagram of the bright-field, annular dark-field, and high-angle annular dark-field30functions of a STEM.30Figure 3-6: Procedure to identify and evaluate the precipitates in HAADF—STEM images.32Figure 3-7: Schematic figure illustrating the parameters which were retrieved from the TEM33Figure 4-1: Diagram of strain vs. logarithm of time of specimens with 0.5, 1.0, and 1.6% strain33
139971 hours at 823 K under 120 MPa.26Figure 3-4: Schematic of EBSD technique.28Figure 3-5: Diagram of the bright-field, annular dark-field, and high-angle annular dark-field30functions of a STEM.30Figure 3-6: Procedure to identify and evaluate the precipitates in HAADF—STEM images.32Figure 3-7: Schematic figure illustrating the parameters which were retrieved from the TEM33micrographs: particle size, number density and projected area fraction.33Figure 4-1: Diagram of strain vs. logarithm of time of specimens with 0.5, 1.0, and 1.6% strain35Figure 4-2: Logarithm of creep rate vs. logarithm of time at 823 K for specimens 0.5, 1.0, 1.6
139971 hours at 823 K under 120 MPa.26Figure 3-4: Schematic of EBSD technique.28Figure 3-5: Diagram of the bright-field, annular dark-field, and high-angle annular dark-field30functions of a STEM.30Figure 3-6: Procedure to identify and evaluate the precipitates in HAADF—STEM images.32Figure 3-7: Schematic figure illustrating the parameters which were retrieved from the TEM33Figure 4-1: Diagram of strain vs. logarithm of time of specimens with 0.5, 1.0, and 1.6% strain35Figure 4-2: Logarithm of creep rate vs. logarithm of time at 823 K for specimens 0.5, 1.0, 1.635
139971 hours at 823 K under 120 MPa