Kathrin Nollenberger (Autor)
 Löslichkeitsverbesserung schwerlöslicher Arzneistoffe durch Schmelzextrusion mit Polymethacrylaten

https://cuvillier.de/de/shop/publications/937
Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1 Einleitung 1
1.1 Löslichkeit und Lösungsgeschwindigkeit 2
1.2 Formulierung schwerlöslicher Arzneistoffe 4
1.2.1 Verringerung der Partikelgröße 4
1.2.2 Verwendung solubilisierender Hilfsstoffe 5
1.2.3 Veränderung der Kristallform 8
1.3 Feste Dispersionen zur Löslichkeitsverbesserung 10
1.4 Charakterisierung fester Dispersionen 12
1.4.1 Amorpher und kristalliner Zustand 12
1.4.2 Analytische Methoden 14
1.5 Herstellungsmethoden fester Dispersionen 18
1.5.1 Lösemethode 18
1.5.2 Schmelzmethode 19
1.6 Schmelzextrusion 20
1.6.1 Schmelzextrusion zur Herstellung fester Lösungen 20
1.6.2 Schmelzextrusionsequipment 22
1.6.3 Wichtige Parameter. 24
1.6.4 Vor- und Nachteile. 25
1.6.5 Wirkstoffe, Hilfsstoffe und Polymere in der Schmelzextrusion 25
1.7 Zielsetzung 29
1.7.1 Schmelzextrusion mit Felodipin und einem Polymer als Träger 29
1.7.2 Modifizierung der Extrudate durch Zusatz von Hilfsstoffen 29
1.7.3 Durchführung einer in-vivo Studie 29
1.7.4 Schmelzextrusion mit Simvastatin 30
1.7.5 Schmelzextrusion mit Carbamazepin 30
2 Material und Methoden 31
2.1 Materialien 31
2.1.1 Modellarzneistoff Felodipin 31
2.1.2 Modellarzneistoff Simvastatin 32
2.1.3 Modellarzneistoff Carbamazepin 33
2.1.4 Chemikalien 36
2.1.5 Zusammensetzung der Medien für Löslichkeits-, Freisetzungs- und Transferuntersuchungen 38
2.2 Allgemeine Geräte und Methoden 41
2.2.1 Löslichkeitsuntersuchungen der Wirkstoffe 41
2.2.2 Thermogravimetrie 41
2.2.3 Herstellung der Extrudate 42
2.2.4 Differential Scanning Calorimetry (DSC) 50
2.2.5 Röntgenpulverdiffraktometrie (XRPD) 51
2.2.6 Infrarotspektroskopie (IR-spektroskopie) 51
2.2.7 UV Analytik von Carbamazepin 51
2.2.8 Hochleistungsflüssigkeitschromatographie (HPLC) 51
2.2.9 Gehaltsbestimmung der Extrudate 53
2.2.10 Freisetzungsversuche 54
2.3 Spezielle Methoden für Felodipin 55
2.3.1 Methoden zur Aufklärung der Rekristallisationsinhibition 55
2.3.2 Transfermodell 56
2.3.3 In-vivo Studie ausgewählter Formulierungen in Hunden. 57
2.4 Spezielle Methoden für Carbamazepin 63
2.4.1 Herstellung der Modifikation I und des Dihydrats 63
2.4.2 Herstellung einer Pulvermischung aus Modifikation I und EUDRAGIT ${ }^{\circledR}$ E 63
2.4.3 Untersuchung zur Bildung des Dihydrats 63
2.4.4 Rasterelektronenmikroskopie (REM) 64
2.5 Durchführung der Methoden - Kooperationen 65
3 Ergebnisse und Diskussionen - Felodipin 67
3.1 Thermogravimetrie und Differentialthermoanalyse 67
3.2 Löslichkeit und Freisetzung 68
3.3 Extrusion von Felodipin mit hydrophilen Polymeren 69
3.3.1 Gehaltsbestimmung 70
3.3.2 Differential Scanning Calorimetry 70
3.3.3 Röntgenpulverdiffraktometrie 72
3.3.4 Freisetzungsuntersuchungen 75
3.3.5 Stabilität der Extrudate mit EUDRAGIT ${ }^{\circledR}$ E 79
3.3.6 Zusammenfassung 83
3.4 Modifikation der Extrudate- Zusatz eines weiteren Polymers 84
3.4.1 DSC 84
3.4.2 Charakterisierung der Extrudate mit EUDRAGIT ${ }^{\circledR}$ NE 87
3.4.3 Aufklärung des Mechanismus der Rekristallisationsinhibition 89
3.4.4 Zusammenfassung 95
3.5 Modifikation der Extrudate - Zusatz von Säuren 97
3.5.1 Extrusion mit verschiedenen Säuren 98
3.5.2 DSC-Untersuchungen 99
3.5.3 Röntgenpulverdiffrakometrie 103
3.5.4 Infrarotspektroskopie 105
3.5.5 Freisetzungsverhalten in magensimulierenden Medien 109
3.5.6 Stabilität 113
3.5.7 Zusammenfassung 117
3.6 In-vivo Studie 118
3.6.1 Zusammensetzung der Formulierungen und Begründung für die Auswahl 118
3.6.2 In-vitro Freisetzungsversuche 119
3.6.3 Transfermodell 122
3.6.4 Ergebnisse der Hundestudie 125
3.6.5 Berechnung der absoluten und relativen Bioverfügbarkeiten 130
3.6.6 Zusammenfassung 136
4 Ergebnisse und Diskussionen - Simvastatin 137
4.1 Differential Scanning Calorimetry und TGA 137
4.2 Löslichkeit und Auflösungsgeschwindigkeit 137
4.3 Gehaltsbestimmung der Extrudate 138
4.4 Extrusion von Simvastatin mit EUDRAGIT ${ }^{\circledR} \mathrm{E}$ 139
4.4.1 Charakterisierung der Extrudate direkt nach der Herstellung 139
4.4.2 Charakterisierung der Extrudate nach der Lagerung 143
4.5 Extrusion von Simvastatin mit EUDRAGIT ${ }^{\circledR}$ E und Säure 146
4.5.1 Charakterisierung der Extrudate direkt nach der Herstellung 146
4.5.2 Charakterisierung der Extrudate nach der Lagerung 147
4.5.3 Zusammenfassung 150
5 Ergebnisse und Diskussionen - Carbamazepin 151
5.1 Thermogravimetrische Analyse 151
5.2 Löslichkeit und Auflösungsgeschwindigkeit 151
5.3 Gehaltsbestimmung der Extrudate 152
5.4 Polymorphie - Charakterisierung der Modifikationen 152
5.4.1 Extrudate mit EUDRAGIT ${ }^{\circledR}$ E: Extrusionstemperatur > Schmelzpunkt 155
5.4.2 Extrudate mit EUDRAGIT ${ }^{\circledR} \mathrm{E}$ bei verschiedenen Extrusionstemperaturen 165
5.5 Extrusion mit PVPVA 64 bei verschiedenen Temperaturen 168
5.5.1 Charakterisierung der Extrudate 168
5.5.2 Untersuchung zur Dihydratbildung 171
5.6 Extrusion mit EUDRAGIT ${ }^{\circledR}$ E - Zusatz von Säuren 173
5.6.1 Charakterisierung nach der Herstellung 173
5.6.2 Stabilität 175
5.6.3 Zusammenfassung 176
6 Zusammenfassung 177
7 Anhang 183
8 Literaturverzeichnis 204
9 Lebenslauf 212

