Inhaltsverzeichnis

1	Einleitung		
	1.1	Löslichkeit und Lösungsgeschwindigkeit	2
	1.2	Formulierung schwerlöslicher Arzneistoffe	4
	1.2.	1 Verringerung der Partikelgröße	4
1.2.2		2 Verwendung solubilisierender Hilfsstoffe	5
	1.2.3	3 Veränderung der Kristallform	8
	1.3	Feste Dispersionen zur Löslichkeitsverbesserung	10
	1.4	Charakterisierung fester Dispersionen	12
	1.4.	1 Amorpher und kristalliner Zustand	12
	1.4.	2 Analytische Methoden	14
	1.5	Herstellungsmethoden fester Dispersionen	18
	1.5.	1 Lösemethode	18
	1.5.	2 Schmelzmethode	19
	1.6	Schmelzextrusion	20
	1.6.	1 Schmelzextrusion zur Herstellung fester Lösungen	20
	1.6.	2 Schmelzextrusionsequipment	22
	1.6.3	3 Wichtige Parameter	24
	1.6.	4 Vor- und Nachteile	25
	1.6.	Wirkstoffe, Hilfsstoffe und Polymere in der Schmelzextrusion	25
	1.7	Zielsetzung	29
	1.7.	Schmelzextrusion mit Felodipin und einem Polymer als Träger	29
	1.7.	2 Modifizierung der Extrudate durch Zusatz von Hilfsstoffen	29
	1.7.	3 Durchführung einer in-vivo Studie	29
	1.7.	4 Schmelzextrusion mit Simvastatin	30
	1.7.	5 Schmelzextrusion mit Carbamazepin	30
2	Mate	erial und Methoden	31
	2.1	Materialien	31
	2.1.	1 Modellarzneistoff Felodipin	31
	2.1.	2 Modellarzneistoff Simvastatin	32
	2.1.	3 Modellarzneistoff Carbamazepin	33
	2.1.	4 Chemikalien	36
	2.1.	5 Zusammensetzung der Medien für Löslichkeits-, Freisetzungs-	und

	2.2 Allg	emeine Geräte und Methoden	41
	2.2.1	Löslichkeitsuntersuchungen der Wirkstoffe	41
	2.2.2	Thermogravimetrie	41
	2.2.3	Herstellung der Extrudate	42
	2.2.4	Differential Scanning Calorimetry (DSC)	50
	2.2.5	Röntgenpulverdiffraktometrie (XRPD)	51
	2.2.6	Infrarotspektroskopie (IR-spektroskopie)	51
	2.2.7	UV Analytik von Carbamazepin	51
	2.2.8	Hochleistungsflüssigkeitschromatographie (HPLC)	51
	2.2.9	Gehaltsbestimmung der Extrudate	53
	2.2.10	Freisetzungsversuche	54
	2.3 Spe	zielle Methoden für Felodipin	55
	2.3.1	Methoden zur Aufklärung der Rekristallisationsinhibition	55
	2.3.2	Transfermodell	56
	2.3.3	In-vivo Studie ausgewählter Formulierungen in Hunden	57
	2.4 Spe	zielle Methoden für Carbamazepin	63
	2.4.1	Herstellung der Modifikation I und des Dihydrats	63
	2.4.2	Herstellung einer Pulvermischung aus Modifikation I und EUDRAGIT® E	63
	2.4.3	Untersuchung zur Bildung des Dihydrats	63
	2.4.4	Rasterelektronenmikroskopie (REM)	64
		chführung der Methoden – Kooperationen	
3	Ergebnis	se und Diskussionen - Felodipin	67
	3.1 The	rmogravimetrie und Differentialthermoanalyse	67
		ichkeit und Freisetzung	
	3.3 Extr	usion von Felodipin mit hydrophilen Polymeren	69
	3.3.1	Gehaltsbestimmung	
	3.3.2	Differential Scanning Calorimetry	
	3.3.3	Röntgenpulverdiffraktometrie	
	3.3.4	Freisetzungsuntersuchungen	
	3.3.5	Stabilität der Extrudate mit EUDRAGIT® E	
	3.3.6	Zusammenfassung	
		lifikation der Extrudate– Zusatz eines weiteren Polymers	
	3.4.1	DSC	
	3.4.2	Charakterisierung der Extrudate mit EUDRAGIT® NE	
	3.4.3	Aufklärung des Mechanismus der Rekristallisationsinhibition	89

	3.4.	4 Zusammenfassung	95
	3.5	Modifikation der Extrudate - Zusatz von Säuren	97
	3.5.	1 Extrusion mit verschiedenen Säuren	98
	3.5.	2 DSC-Untersuchungen	99
	3.5.	3 Röntgenpulverdiffrakometrie	103
	3.5.	4 Infrarotspektroskopie	105
	3.5.	5 Freisetzungsverhalten in magensimulierenden Medien	109
	3.5.	6 Stabilität	113
	3.5.	7 Zusammenfassung	117
	3.6	In-vivo Studie	118
	3.6.	Zusammensetzung der Formulierungen und Begründung für die Auswahl	118
	3.6.	2 In-vitro Freisetzungsversuche	119
	3.6.	3 Transfermodell	122
	3.6.	4 Ergebnisse der Hundestudie	125
	3.6.	5 Berechnung der absoluten und relativen Bioverfügbarkeiten	130
	3.6.	6 Zusammenfassung	136
4	Erge	ebnisse und Diskussionen - Simvastatin	137
	4.1	Differential Scanning Calorimetry und TGA	137
	4.2	Löslichkeit und Auflösungsgeschwindigkeit	137
	4.3	Gehaltsbestimmung der Extrudate	138
	4.4	Extrusion von Simvastatin mit EUDRAGIT® E	139
	4.4.	1 Charakterisierung der Extrudate direkt nach der Herstellung	139
	4.4.	Charakterisierung der Extrudate nach der Lagerung	143
	4.5	Extrusion von Simvastatin mit EUDRAGIT® E und Säure	146
	4.5.	1 Charakterisierung der Extrudate direkt nach der Herstellung	146
	4.5.	Charakterisierung der Extrudate nach der Lagerung	147
	4.5.	3 Zusammenfassung	150
5	Erge	ebnisse und Diskussionen - Carbamazepin	151
	5.1	Thermogravimetrische Analyse	151
	5.2	Löslichkeit und Auflösungsgeschwindigkeit	151
	5.3	Gehaltsbestimmung der Extrudate	152
	5.4	Polymorphie – Charakterisierung der Modifikationen	152
	5.4.	1 Extrudate mit EUDRAGIT® E: Extrusionstemperatur > Schmelzpunkt	155
	5.4.	2 Extrudate mit EUDRAGIT® E bei verschiedenen Extrusionstemperaturen	165
	5.5	Extrusion mit PVPVA 64 bei verschiedenen Temperaturen	168

	5.5.1	Charakterisierung der Extrudate	168
	5.5.2	Untersuchung zur Dihydratbildung	171
5	5.6 Ext	trusion mit EUDRAGIT [®] E – Zusatz von Säuren	173
	5.6.1	Charakterisierung nach der Herstellung	173
	5.6.2	Stabilität	175
	5.6.3	Zusammenfassung	176
6	Zusammenfassung		177
7	Anhang		
8	Literaturverzeichnis		
9	Lebenslauf		