Magnetic properties of \(R_2\text{PdSi}_3 \) \((R = \text{heavy rare earth})\) compounds

https://cuvillier.de/de/shop/publications/995

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de
Table of contents

Abstract 3
Zusammenfassung 3
Table of contents 4
Abbreviations 6

1. Serving as an introduction – or why R_2PdSi$_3$?
 1.1 Crystal electric fields in rare earth compounds 7
 1.2 Exchange interaction
 1.2.1 RKKY exchange interaction 8
 1.2.2 Dipole-dipole exchange interaction 9
 1.2.3 Other types of exchange interaction 9
 1.2.4 Dzyaloshinski–Moriya 9
 1.3 From the rare earth metals to R_2PdSi$_3$
 1.3.1 R_2PdSi$_3$ 11
 1.3.2 Growth and preparation of single crystals 12
 1.4 Introduction to the employed methods
 1.4.1 Definition of directions and the use of real and reciprocal space 13
 1.4.2 Macroscopic methods - overview 14
 1.4.3 Macroscopic methods – experimental setup 17
 1.4.4 Systematic errors for magnetisation and ac-susceptibility measurements 20
 1.5 Neutron diffraction
 1.5.1 Single crystal neutron diffraction at the 6T2 diffractometer 22
 1.5.2 Single crystal neutron diffraction at the E2 diffractometer 23
 1.5.3 Single crystal neutron diffraction at the PANDA spectrometer 24
 1.5.4 Special sample holder 24
 1.5.5 Extinction correction for Ho$_2$PdSi$_3$ 25

2. Comparison of the macroscopic properties of R_2PdSi$_3$ ($R = \text{Gd, Tb, Dy, Ho, Er, Tm}$) 26
 2.1 Inverse ac-susceptibilities 26
 2.2 Magnetization in the magnetically ordered state 36

3. Gd$_2$PdSi$_3$
 3.1 Ac-susceptibility 43
 3.2 Phase diagram for Gd$_2$PdSi$_3$ 45
 3.3 Diffraction 47
 3.4 Summary 48
 3.5 Additional room temperature results of the diffraction experiment 49

4. Crystallographic structure of R_2PdSi$_3$
 4.1 Reported indications for a crystallographic superstructure in R_2PdSi$_3$ 51
 4.2 Neutron diffraction experiments 52
 4.3 Heuristic approach and crystallographic structure model 54
 2.3 The modulated structure 58
 2.4 Comments on the structural models: triclinic and modulated hexagonal 59

5. Long- and short range magnetic order in Tb$_2$PdSi$_3$
 5.1 Results of ac-susceptibility
 5.1.1 Ac-susceptibility: Zero field transitions 63
 5.1.2 Real part of ac-susceptibility in small external fields 64
 5.1.3 Ac-susceptibility in magnetic fields above 0.75 T 66
 5.1.4 Field dependency of the ac-susceptibility measured at selected temperatures 68
 5.1.5 Confidence intervals in (T, H) space of the anomalies in the ac-susceptibility 70
 5.2 Supporting macroscopic measurements 70
 5.3 Feature map for Tb$_2$PdSi$_3$ derived from the macroscopic measurements 73
Table of contents

5.4 Neutron diffraction in zero magnetic field
5.4.1 Long- and short- range order in Tb$_2$PdSi$_3$ 75
5.4.2 Additional observations leading to a magnetic structure proposal 80
5.4.3 Comment on the published magnetic structure 81
5.4.4 Heuristic magnetic structure model for Tb$_2$PdSi$_3$ - ansatz 81
5.4.5 Heuristic magnetic structure model for Tb$_2$PdSi$_3$ - result 83
5.5 Neutron diffraction in magnetic fields – multiple magnetic phase transitions 85
5.5.1 LRO coexistence of two phases in applied magnetic fields 86
5.5.3 Short- to long-range order transition in applied field for $T < T_2$ 88
5.5.4 Magnetic phases found for $T_2 < T < T_N$ in applied fields 90
5.6 The high field LRO phase of Tb$_2$PdSi$_3$: FiM 92
5.7 Phase diagram of Tb$_2$PdSi$_3$: interpretations and conclusions 95
6. Ho$_2$PdSi$_3$
6.1 Ac-susceptibility and a phase diagram for Ho$_2$PdSi$_3$ 98
6.2 Neutron diffraction on Ho$_2$PdSi$_3$
6.2.1 Zero and low field ($\mu_0 H < 0.8$ T) magnetic structure 101
6.2.2 High field magnetic structure ($\mu_0 H > 0.8$ T) 103
6.3 Possible scenarios 105
6.3.1 Zero field magnetic structure 105
6.3.2 High field magnetic structure 106
6.4 Conclusion 110
7. Er$_2$PdSi$_3$, Tm$_2$PdSi$_3$ and Dy$_2$PdSi$_3$
7.1 Zero field magnetic structure and the meaning of T_2 in Er$_2$PdSi$_3$ 112
7.2 Magnetic neutron diffraction of Tm$_2$PdSi$_3$ 116
7.3 Magnetic neutron diffraction of Dy$_2$PdSi$_3$ 118
8. Discussion and Conclusions 120
8.1 The role of the CEF effect in R$_2$PdSi$_3$ 120
8.2 Zero field magnetic structures 123
8.3 Generic phase diagram 124
8.4 Estimation of magnetic exchange coupling 129
8.5 Conclusion 130
Appendix A – Magnetic moment direction of Er$_2$PdSi$_3$ and Ho$_2$PdSi$_3$ 133
Appendix B – CEF transitions 135
Appendix C – Lattice constants of R$_2$PdSi$_3$
List of figures 139
List of tables 141
Bibliography 142
Danksagung 152
Versicherung 154
Abbreviations

\(\mu_0 \) permeability of the free space \((4\pi \cdot 10^{-7} \text{ Vs/Am})\)

\(\mu_B \) Bohr magneton \((9.274\cdot10^{-24} \text{ J/T})\)

\(\mu_0 H \) (external) magnetic field \((\text{in Tesla})\)

\(M \) magnetisation \((\text{in Tesla})\)

\(B \) magnetic inductance \((\text{in Tesla})\)

\(\mu \) magnetic moment \([\mu_B/\text{ion}]\)

\(\chi \) susceptibility \((\text{Volume susceptibility, unit free in SI})\)

\(\chi_{ac} \) ac-susceptibility

\(a \) vector

\(a \) norm of vector or in general a scalar

\(n, m \) integer values \(0, 1, 2, \ldots\)

\([u, v, w]\) vector in real space

\((H, K, L)\) vector in reciprocal space

\(\{h, k, l\} \) cohort of symmetrical equivalent reflections

\((H0L)\) reciprocal plane spanned by the vectors \((H, 0, 0)\) and \((0, 0, L)\)

\(V_{EZ} \) volume of the unit cell

r. l. u. relative lattice units

RKKY Rudermann-Kittel-Kasuya-Yosida

CEF Crystal-Electric-Field

DM Dzyaloshinski–Moriya

PM paramagnetic

FM ferromagnetic

AFM antiferromagnetic

CEF crystal electric field

LRO long-range order

SRC short-range correlation(s)

iS-LRO incommensurate short-to-long-range order

cS-LRO commensurate short-to-long-range order

\(T_N \) Néel temperature

\(T_2 \) second ordering temperature

\(T_F \) ordering temperature of the field-induced FiM phase

\(k_B \) Boltzmann constant \((1.32 \cdot 10^{-23} \text{ J/K})\)

\(H_D \) magnetic field associated to equilibrium condition \((\text{in Tesla} \ (H_D = \mu_B H))\)

\(H_S \) magnetic field associated to a short-to-long range ordered transition \((\text{in Tesla})\)

\(H_c \) critical magnetic field of the magnetic ground state \((\text{in Tesla})\)

\(H_{c2} \) magnetic field for parallel alignment of the magnetic moments \((\text{in Tesla})\)

ILL Institut Laue-Langevin

LLB Laboratoire Leon Brillouin

HZB Helmholtz-Zentrum für Materialen und Energie Berlin

FRM-II Forschungsneutronenquelle Heinz Maier-Leibnitz

APS Advanced Photon Source

ESRF European Synchrotron Radiation Facility