
2 Mathematical Formulation

2.1 Flow models

For the study of the motion of particles different basic flows will be considered. The

following first three flows are given in their analytical form. This permits to perform

the validation of the code for the motion of the particle. In the second phase the

discrete, numerically calculated thermocapillary flow in the half-zone is considered.

2.1.1 Analytical flows

As already mentioned, the Stuart, Taylor–Green and Arnold–Childress–Beltrami

(ABC) flows can be exactly specified in every point. Furthermore, they are periodic

and time-independent. This is an advantage for the mere analysis of the dynam-

ics of the particle-flow coupling phenomenon avoiding disturbing effects due to the

interpolation errors and the particle-wall or particle-free surface interaction.

Stuart vortex flow

The Stuart vortex flow consists on Stuart’s one-parameter family of analytical solu-

tions of the two-dimensional Euler equations (Stuart 1967, Pierrehumbert & Windall

1981). The general form of the stream function in dimensional units reads

ψ∗(x∗, y∗) =
U∞L

2π
ln

[
cosh

(
2πy∗

L

)
− ρ̃ cos

(
2πx∗

L

)]
, (2.1)
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which corresponds to the velocity components

ux
∗(x∗, y∗) =

∂ψ∗

∂y∗

= U∞

sinh

(
2πy∗

L

)
[
cosh

(
2πy∗

L

)
− ρ̃ cos

(
2πx∗

L

)] , (2.2a)

uy
∗(x∗, y∗) = −∂ψ∗

∂x∗
= −U∞

ρ̃ sin

(
2πx∗

L

)
[
cosh

(
2πy∗

L

)
− ρ̃ cos

(
2πx∗

L

)] . (2.2b)

In (2.1) and (2.2) x∗ and y∗ represent the dimensional position-coordinates in a carte-

sian frame of reference whereas u∗

x and u∗

y are the dimensional components of the

velocity vector. The parameter L represents the distance between two adjacent vor-

tices and U∞ the velocity of the undisturbed shear flow. The parameter ρ̃ is the

concentration of vorticity. The value ρ̃ = 1 indicates a periodic row of point vortices

and ρ̃ = 0 indicates a parallel shear flow. In this work the intermediate case ρ̃ = 0.25

is considered which represents an infinite series of cat’s-eye vortices along a straight

line as shown in fig. 2.1. The most natural way to scale the flow results in taking the

scaling parameters L0 and U0, for the length and the velocity respectively, equal to

L and U∞, with a derived scale for the time equal to L/U∞. Referring to a generic

scaling velocity U0, so that

x =
x∗

L
, u =

u∗

U0

, (2.3)

the resulting nondimensional velocity components read

ux(x, y) = A
sinh (2πy)

[cosh (2πy) − ρ̃ cos (2πx)]
, (2.4a)

uy(x, y) = −A
ρ̃ sin (2πx)

[cosh (2πy) − ρ̃ cos (2πx)]
, (2.4b)

where

A =
U∞

U0

. (2.5)

This assumption permits to vary the strength of the flow A in the nondimensional

equations as an independent parameter.
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Figure 2.1: Stuart vortices in a [−1, 1] × [−0.5, 0.5] domain for ρ̃ = 0.25 and A = 1.

After the scaling the distance between two consecutive vortex centers is

always equal to 1. The lines represent the streamlines of the flow. The

arrows indicates the direction of the velocity field and the color shows the

absolute value of the velocity vector.

Taylor–Green vortex flow

The Taylor–Green flow is formed by an array of counter-rotating vortices arranged

in a checker-board fashion which results in rectangular convection cells (see fig. 2.2).

Similar types of flow can be encountered, for example, in thermal convection with

free-slip boundaries or in Langmuir circulation (Stommel 1949, Maxey 1987). The

dimensional stream function is given by

ψ∗(x∗, y∗) =
UmaxL

π
cos

(
πx∗

L

)
cos

(
πy∗

L

)
, (2.6)

with the dimensional velocity components

ux
∗(x∗, y∗) =

∂ψ∗

∂y∗
= −Umax cos

(
πx∗

L

)
sin

(
πy∗

L

)
, (2.7a)

uy
∗(x∗, y∗) = −∂ψ∗

∂x∗

= Umax sin

(
πx∗

L

)
cos

(
πy∗

L

)
, (2.7b)

where Umax represents the velocity maximum. Following the scaling presented in
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Figure 2.2: Taylor–Green vortices in a [−1, 1] × [−1, 1] domain for A = 1. After

the scaling the distance between two consecutive vortex centers is always

equal to 1. The lines represent the streamlines of the flow. The arrows

indicates the direction of the velocity field and the color the absolute value

of the velocity vector.

(2.3) the nondimensional form of the velocity components reads

ux(x, y) = −A cos (πx) sin (πy) , (2.8a)

uy(x, y) = A sin (πx) cos (πy) , (2.8b)

with

A =
Umax

U0

. (2.9)

Arnold–Beltrami–Childress vortex flow

The Arnold–Beltrami–Childress flow, usually known under the acronym ABC flow,

is a three-dimensional periodic flow (see fig. 2.3). It is an inviscid flow and it is

the solution of the three-dimensional Euler equation. The dimensional form of the
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velocity components reads

ux
∗(x∗, y∗) = UA sin

(
πz∗

L

)
+ UB cos

(
πy∗

L

)
, (2.10a)

uy
∗(x∗, y∗) = UB sin

(
πx∗

L

)
+ UA cos

(
πz∗

L

)
, (2.10b)

uz
∗(x∗, y∗) = UC sin

(
πy∗

L

)
+ UB cos

(
πx∗

L

)
. (2.10c)

The dimensional parameters UA, UB and UC represent the strength of the flow. Taking

the generic velocity U0 as scaling factor it results

A =
UA

U0

, (2.11a)

B =
UB

U0

, (2.11b)

C =
UC

U0

, (2.11c)

and the scaled flow takes the form

ux(x, y) = A sin (πz) + C cos (πy) , (2.12a)

uy(x, y) = B sin (πx) + A cos (πz) , (2.12b)

uz(x, y) = C sin (πy) + B cos (πx) . (2.12c)

2.1.2 Flow in the half-zone

The half-zone model of the floating-zone process consists of a cylindrical volume of liq-

uid confined between two differentially heated circular rods of radius R at a distance

d, and a free lateral surface. The rods are kept at constant different temperatures

T0 + ΔT/2 and T0 −ΔT/2 (fig. 2.4), where T0 is the mean value of the temperature.

On the free cylindrical surface temperature-induced surface-tension gradients drive

an axisymmetric steady toroidal vortex flow. In the range of large Prandtl numbers

(Pr > 1), above a critical Reynolds number Rec the flow becomes three-dimensional

and oscillatory. The critical Reynolds number is proportional to the critical temper-

ature difference ΔTc. In the supercritical case (Re > Rec) a pair of counter-rotating

traveling waves in azimuthal direction arises. This is an unstable state and one of the

two traveling wave decays leaving only one wave propagating azimuthally. In fig. 2.5
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Figure 2.3: Arnold–Beltrami–Childress flow with A = B = C = 1 plotted over

a three-dimensional spatial period [−1, 1] × [−1, 1] × [−1, 1]. The color

represents the absolute value of the velocity vector: toward the red the

strongest velocities and toward the blue the stagnation points. The black

lines represent the streamlines of the flow.
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