

Katrin Knecht (Autor) Molecular mechanisms of the Hs1pro-1-mediated nematode (Heterodera schachtii) resistance and its potential for genetic engineering of plant disease resistance

https://cuvillier.de/de/shop/publications/1018

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Table of contents

Chapter I: Introduction			1
1	Pla	ant pathogen resistance	1
	1.1	General mechanisms of plant pathogen resistance	1
	1.2	Plant susceptibility	3
	1.3	R-gene mediated resistance	4
	1.4	Non-host resistance	7
2	Pla	ant resistance responses	8
	2.1	Early recognition events	8
	2.2	Signaling components	8
	2.3	Defense related proteins	10
3	Ne	ematode resistance in plants	11
	3.1	Agricultural importance of plant pathogenic nematodes	11
	3.2	Nematode resistance genes	12
	3.3	Nematode resistance response	15
4	Ge	enetic engineering	16
	4.1	Natural resistance mechanisms	16
	4.2	Toxins and RNAi	17
5	Οι	atline of the thesis	18
6	Re	ferences	20

Chapter II

The gene BvGLP-1 encoding for a germin-like protein regulates the Hs1 ^{pro-1} -mediated			
nematode (Heterodera schachtii Schm.) resistance by its oxalate oxidase activity in sugar			
beet (Beta vulgaris L.) and Arabidopsis thaliana	28		

1	Abst	ract	29
2	Intro	oduction	30
3	Mat	erials and Methods	34
	3.1	Plant material	34
	3.2	cDNA-AFLP analysis	34
	3.3	Cloning, sequencing and sequence analysis	35
	3.4	Full-length cDNA isolation	35
	3.5	Transformation of Arabidopsis and sugar beet with A. tumefaciens/A. rhizogenes	36
	3.5.1	Plasmid constructs and agrobacterial cultures	36
	3.5.2	Sugar beet hairy roots transformation	36
	3.5.3	Arabidopsis thaliana root transformation	37

	3.6	DNA, Southern hybridization and PCR	37
	3.7	RNA isolation, RT-PCR and qRT-PCR	38
	3.8	Nematode infection experiments	39
	3.9	OXO enzyme activity tests	40
	3.10	ATH1-microarray analysis	40
	3.11	Analysis of A. thaliana mutant	41
4	Res	ılts	42
	4.1	Cloning of differential expressed fragments from resistant beets by use of cDNA-AFLP	
		expression profiling	42
	4.2	Isolation and characterization of full-length cDNA sequence of TDF_Car	43
	4.3	Functional analysis of BvGLP-1 in transgenic sugar beet hairy roots and Arabidopsis thaliana	
		plants	46
	4.4	Nematode inoculation experiments	48
	4.5	Hs1 ^{pro-1} regulates the expression of GLP genes in Arabidopsis	50
	4.6	Functional analysis of Arabidopsis plants knocked out in locus of AT5G20630	55
	4.7	Determination of oxalate oxidase activity of BvGLP-1	56
	4.8	BvGLP-1 activates plant resistance response	59
5	Disc	ussion	61
	5.1	BvGLP-1 is involved in activation of nematode resistance	61
	5.2	<i>BvGLP-1</i> is a functional oxalate oxidase	62
	5.3	BvGLP-1 represents a key regulator of the Hs1 ^{pro-1} -mediated nematode resistance	63
	5.4	A possible action mode of <i>BvGLP-1</i>	65
6	Ack	nowledgments	66
7	Refe	erences	67

Chapter III

Overexpression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsisleads to resistance against phytopathogenic fungi (Rhizoctonia solani and Verticilliumlongisporum), but does not affect the beneficial interaction with the growth-promotingendophyte Piriformospora indica72

1	Abs	stract	73
2	Inti	roduction	74
3	Ma	terial and Methods	77
	3.1	Plant material and fungal strains	77
	3.2	Generation of transgenic A. thaliana plants	77
	3.3	Infection assay of Arabidopsis plants with Rhizoctonia on agar plates	77
	3.4	Infection assay of Arabidopsis plants with Rhizoctonia in soil	78

	3.5	Infection assay of Arabidopsis plants with Verticillium in soil	78
	3.6	Cocultivation experiments with P. indica	78
	3.7	Determination of the degree of root colonization	79
	3.8	Staining assays and light microscopy observations	79
	3.9	Semi-quantitative and real-time PCR	80
	3.10	PCR and Southern analysis	81
4	Res	ults	82
	4.1	Transgenic Arabidopsis plants expressing BvGLP-1	82
	4.2	Infection experiments of Arabidopsis plants with R. solani and P. indica on agar plates	82
	4.3	Infection experiments of Arabidopsis plants with R. solani and V. longisporum in soil	85
	4.4	Microscopic observations of Arabidopsis roots infected with the phytopahogenic fungi	87
	4.5	Analysis of the transcript levels of selected defense related genes in transgenic plants	88
	4.6	Co-cultivation of Arabidopsis with the growth promoting fungus P. indica in soil	90
5	Disc	cussion	92
6	Ack	nowledgments	94
7	Ref	erences	95
Cho	intor II	7	
Спи			
1 W0) NBS-1	LRR carrying resistance gene analogs (RGAs) are involved in the Hs1 ^{rv} -	
mea	liated n	ematode (Heterodera schachtii Schm.) resistance in sugar beet	
(Bei	ta vulgo	uris L.)	99
1	Abs	tract	100
2	Intr	oduction	101
_			
3	Mat	terial and Methods	104
	3.1	Plant material	104
	3.2	Generation of transgenic plants	104
	3.2.1	Plasmid constructs and Agrobacteria cultures	104
	3.2.2	2. Arabidopsis thaliana root transformation	104
	3.3	PCR and Southern analysis	105
	3.4	Semi-quantitative RT-PCR and qRT-PCR	105
	3.5	Nematode infection experiments	107
	3.6	A. thaliana mutants	108
4	Res	ults	109
	4.1	Sequence, structure and transcript analysis of 3 sugar beet RGAs	109
	4.2	Generation of transgenic Arabidopsis plants expressing each of the RGAs	110
	4.3	Nematode resistance tests with transgenic Arabidopsis plants	111

	4.5	Determination of RGA-mediated signaling pathways	117
5	Disc	ussion	119
6	Ack	nowledgments	121
7	Refe	erences	122

Chapter V

A two-step protocol for improving shoot regeneration frequency from hypocotyl explants of oilseed rape (Brassica napus L.) and its application for Agrobacterium-mediated transformation 125

1	A	Abstract	126
2	I	ntroduction	127
3	Ι	Materials and methods	129
	3.1	Plant materials	129
	3.2	Explant preparation	129
	3.3	Plant tissue culture	129
	3.4	Shoot regeneration protocol	129
	3.5	Plant transformation	130
	3.6	Histochemical GUS assays	130
	3.7	PCR and Southern analysis	131
4	I	Results	132
	4.1	Optimization of shoot regeneration medium from hypocotyl explants	132
	4.2	Improvement of shoot regeneration frequency from hypocotyl explants by use of a two-step	
		protocol	133
	4.3	Improvement of shoot regeneration frequency from hypocotyl explants by addition of STS	134
	4.4	Application of two-step regeneration protocol for generation of transgenic oilseed rape plants	135
5	I	Discussion	138
6	P	Acknowledgements	139
7	I	References	140
Cha	pter	VI: General discussion	141
1	1 <i>BvGLP-1</i> represents a new class of oxalate oxidase-like genes and plays a role in plant		
	r	resistance	141

2	NBS-LRR containing RGAs are involved in the Hs1 ^{pro-1} -mediated resistance	143
3	A possible function model for the <i>Hs1^{pro-1}</i> -mediated resistance response	145

4 A possible signaling pathway leading to the *Hs1^{pro-1}*-mediated resistance response 147

5	Pra	ctical relevance	149	
	5.1	The potential of RGAs and BvGLP-1 in genetic engineering	149	
	5.2	Importance of specific inducible promoters	152	
6	Con	clusions and Outlook	154	
7	Refe	erences	156	
Sun	nmary		162	
Zusammenfassung			164	
Appendix			167	
Danksagung			173	
Leb	Lebenslauf 1			