
Chapter 2

Theory and algorithms

In this chapter the ideas behind rigorous verification will be presented. For a start, we
give a detailed introduction into semidefinite programming. Notations and techniques
of interval arithmetic are provided later. This allows for a more general approach
to the rigorous verification (uncertainties in the input data can thus be involved in the
computation). The actual theorems and algorithms for rigorously bounding the optimal
value are presented in the subsequent sections. Finally, an important case of infeasible
problems is examined in detail.

2.1 Semidefinite programming

Let us first define a semidefinite program in its primal form

p∗ := min〈C,X〉 s.t. 〈Ai, X〉 = bi for i = 1, . . . , m,

X � 0,
(2.1)

where C ∈ Ss, Ai ∈ Ss and b ∈ Rm are given problem parameters, and X ∈ Ss is the
optimization variable. Here, S

s denotes the space of real symmetric matrices of order
s.

〈C,X〉 = trace (CTX) (2.2)

in its turn denotes the inner product over Ss. Moreover, � is the Löwner partial order,
that is X � Y iff X − Y is positive semidefinite.

The Lagrangian dual of (2.1) is

d∗ := max bT y s.t.
m∑

i=1

yiAi 	 C, (2.3)

6

2.1. Semidefinite programming 7

0

0.2

0.4

0.6

0.8

−1

−0.5

0

0.5

1
0

0.5

1

1.5

x1x2

x 3

(a)

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

1.5

2

−2

−1

0

1

x2

x1

x 3
(b)

Figure 2.1: Semidefinite cones for s = 2: X � 0 (left) and 0 	 X 	 I (right).

where y ∈ R
m. The constraints

∑m
i=1 yiAi 	 C are called linear matrix inequalities

(LMI). We use the convention that p∗ = −∞ if (2.1) is unbounded and p∗ = ∞ if (2.1)
is infeasible. The analogous convention is used for (2.3).

Since we have formulated semidefinite programming in its standard form, it is easy
to see, that the optimization domain is the intersection of the cone of positive semidef-
inite matrices with an affine space. The objective function is linear. The introduced
problem can thus be seen as a subclass of cone programming and also as a general-
ization of linear programming. Indeed, if we demand all symmetric matrices to be
diagonal, (2.1) will define a standard linear programming problem.

Example 2.1. To get basic ideas about the geometry of the problem, let us consider
the simplest case of s = 2 and a single equality constraint (m = 1) in Figures 2.1 and
2.2. The positive semidefiniteness condition

X =

(
x1 x2

x2 x3

)
� 0 (2.4)

is fulfilled for all the points in the interior and on the boundary of the cone in Fig-
ure 2.1a. The intersection of two semidefinite cones, shown in Figure 2.1b, is also a
typical configuration. We have this situation, for example, in Chapter 3, where the
condition on one-particle reduced density matrix is exactly 0 	 1RDM 	 I .
For the semidefinite optimization example in Figure 2.2 we use the following data:

C =

(
1 0

0 1

)
, A =

(
2 0.5

0.5 1

)
and b = 1. (2.5)

8 Chapter 2. Theory and algorithms

−1
0
1 −2−1.5−1−0.500.511.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x2
x1

x 3

〈 A, X 〉 = b

(a)

−1
−0.5

0
0.5

1
−2 −1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

x1
x2

x 3

〈 A, X 〉 = b

〈 C, X 〉 = p*

X
~

(b)

Figure 2.2: Intersection of the semidefinite cone from Figure 2.1a with the linear con-
straint plane (left) and the objective function plane passing through the optimal solu-
tion X̃ (right).

The solution of the obtained semidefinite optimization problem is

X̃ =

(
0.3867 0.1602

0.1602 0.0664

)
(2.6)

and the objective value p∗ = 〈C, X̃〉 = 0.4531. When trying to graphically solve the
problem, the idea is again similar to that in LP. We shift the plane 〈C,X〉 = const

downwards until we reach the edge of the feasibility region. In our example we have
to stop at const = 0.4531. X̃ is then the only intersection point of the cone X � 0,
the affine constraint 〈A,X〉 = b and the objective function plane 〈C,X〉 = 0.4531.

As a standard solution algorithm, interior point methods proved to be an approach
of choice. They have their roots in Karmarkar’s work [40], where he introduced an al-
gorithm to solve an LP with polynomial iteration complexity1. As applied to SDPs, the
idea found its development in the works of Nesterov and Nemirovski (see for example
[51] and [52]) and Alizadeh [2]. The concept, similarly to any other barrier function
method, would be to substitute the initial problem with an optimization problem (more
precisely a sequence of them) without the semidefiniteness constraint

p∗ := min〈C,X〉 + μφ(X) s.t. 〈Ai, X〉 = bi for i = 1, . . . , m, (2.7)
1However the development of the idea can be tracked back to the works of Frisch [16] on logarithmic

barrier functions and Huard [30] on the method of centers.

2.1. Semidefinite programming 9

where φ(X) is the barrier function and μ > 0 is the barrier parameter. Standard
barrier function would be a logarithmic function of the type

φ(X) = − ln detX = ln(detX)−1 if X � 0,

φ(X) = +∞ otherwise.
(2.8)

Later on by sequentially decreasing μ towards 0, we solve the initial problem.
The duality theory of semidefinite programming is a bit more subtle compared to

linear programming. The programs satisfy the weak duality condition

d∗ ≤ p∗, (2.9)

but strong duality requires in contrast to linear programming additional conditions
(see for example Nemirovski [50], Ramana, Tunçel, and Wolkowicz [63] and Vanden-
berghe and Boyd [74]).

Theorem 2.1 (Strong Duality Theorem).

a) If (2.1) is strictly feasible (i.e. there exists a feasible positive definite matrix X)
and p∗ is finite, then p∗ = d∗ and the dual supremum is attained.

b) If (2.3) is strictly feasible (i.e. there exists some y ∈ Rm such thatC−∑m
i=1 yiAi

is positive definite) and d∗ is finite, then p∗ = d∗, and the primal infimum is
attained.

In general, one of the problems (2.1) and (2.3) may have optimal solutions while its
dual is infeasible, or the duality gap may be positive at optimality. The strict feasibility
assumptions in Theorem 2.1 are called Slater’s constraint qualifications.

As a matter of convenience, in the rest of the thesis semidefinite programs will be
considered in more general block diagonal form reflecting the sparsity of the problem.
The primal problem (2.1) becomes then

p∗ := min
n∑

j=1

〈Cj, Xj〉 s.t.
n∑

j=1

〈Aij, Xj〉 = bi for i = 1, . . . , m,

Xj � 0 for j = 1, . . . , n,

(2.10)

where Cj ∈ Ssj , Aij ∈ Ssj and Xj ∈ Ssj . Finally, instead of the dual problem (2.3) we
now have

d∗ := max bT y s.t.
m∑

i=1

yiAij 	 Cj for j = 1, . . . , n. (2.11)

10 Chapter 2. Theory and algorithms

2.2 Notation

Throughout this thesis we use the following notation. R, R
n, R

n
+, and R

m×n denote the
sets of real numbers, real vectors, real nonnegative vectors, and real m × n matrices,
respectively. S

n, in its turn, stands for the set of real symmetric matrices. Comparisons
≤, absolute value | · |, min, max, inf and sup are used entrywise for vectors and
matrices. The identity matrix is denoted by I .

For a symmetric matrix A the eigenvalues are sorted non-increasingly, λmax(A) =

λ1(A) ≥ λ2(A) ≥ . . . ≥ λmin(A).
For μ ∈ R the operator

svec(A, μ) := (A11, μA21, . . . , μAn1, A22, μA32, . . . , μAn n−1, Ann)T , (2.12)

transforms symmetric n× n matrices into ((n+ 1)n/2)-dimensional vectors with the
property that the inner product of two symmetric matrices A,B is

〈A,B〉 = svec(A, 2)T svec(B, 1) = svec(A,
√

2)T svec(B,
√

2), (2.13)

and svec(A,
√

2) is the customary svec operator. We prefer the first representation of
the inner product, since this avoids conversion errors of the input data of semidefinite
programs in its vector representation form. The inverse operator of svec is denoted by
smat(a, μ), where a is the vector representation (2.12).

For block matrices with blocks Aj for j = 1, . . . , n we define the concatenated
vector

svec((Aj), μ) := (svec(A1, μ); . . . ; svec(An, μ)). (2.14)

A block diagonal matrix with blocks B1, . . . , Bn will be written as

Diag(B1, . . . , Bn). (2.15)

Other necessary notation concerning, for example, interval arithmetic, will be in-
troduced in the corresponding sections.

2.3 Interval arithmetic

Rigorous verification requires to consider rounding errors of the floating point arith-
metic. One needs tools to control machine rounding and to estimate error propagation.
Interval arithmetic provides us with such tools. Besides that, in real life applications

2.3. Interval arithmetic 11

many values or model parameters are measurement results. Since no devices possess
infinite precision, such values have to be considered with measurement errors. To cope
with this, we allow interval input in all problems discussed in the thesis.

We require only some elementary facts about interval calculations, which are de-
scribed here. There are a number of textbooks on interval arithmetic and self-validating
methods that can be highly recommended to readers. These include Alefeld and
Herzberger [1], Moore [49], and Neumaier [54], [55].

If V is one of the spaces R, Rn, Rm×n, and v, v ∈ V, then the box

v := [v, v] := {v ∈ V : v ≤ v ≤ v} (2.16)

is called an interval quantity in IV with lower bound v and upper bound v. In par-
ticular, IR, IR

n, and IR
m×n denote the set of real intervals a = [a, a], the set of real

interval vectors x = [x, x], and the set of real interval matrices A = [A,A], respec-
tively. The real operations A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers, real
vectors and real matrices can be generalized to interval operations. The result A ◦ B

of an interval operation is defined as the interval hull of all possible real results, that is

A ◦ B := ∩{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}. (2.17)

All interval operations can be easily executed by working appropriately with the lower
and upper bounds of the interval quantities. In the simple cases of addition and sub-
traction, we obtain

A + B = [A +B,A+B],

A − B = [A−B,A− B].
(2.18)

Interval multiplications and divisions require a distinction of cases. Let a = [a, a] ∈
IR and b = [b, b] ∈ IR, then

a · b := [min{ab, ab, ab, ab},max{ab, ab, ab, ab}],
a/b := [a, a] ·

[
1

b
,
1

b

]
, assuming 0 /∈ b.

(2.19)

The rules of commutativity and associativity remain valid also for operations on
IR. The sub-distributivity rule

a(b + c) ⊆ ab + ac (2.20)

with c ∈ IR substitutes the distributivity from R. x = [0, 0] and y = [1, 1] are the
unique neutral elements with respect to addition and multiplication. A fundamental

12 Chapter 2. Theory and algorithms

property of interval arithmetic is inclusion monotonicity:

a ⊆ a′, b ⊆ b′ ⇒ a ◦ b ⊆ a′ ◦ b′, ◦ ∈ {+,−, ·, /}. (2.21)

This property follows directly from the set-theoretical definitions of the interval arith-
metic operations (2.17). Thus rational interval functions are inclusion monotonic, as
are natural interval extensions of all the standard functions used in computing. With
proper rounding procedures, rounded interval arithmetic operations are also inclusion
monotonic (Moore [49]).

Similarly all operations (2.17) between interval vectors and interval matrices can
be executed by replacing every real operation by the corresponding interval operation.
For example the i, j component of the product of two interval matrices C,X ∈ IR

n×n

is

(CX)ij :=
n∑

k=1

CikXkj, (2.22)

and the inner product

〈C,X〉 = trace (CTX) =

n∑
i,j=1

CijXij. (2.23)

For interval quantities A,B ∈ IV we define

midA := (A+ A)/2 as the midpoint, (2.24)

radA := (A−A)/2 as the radius, (2.25)

|A| := sup{|A| : A ∈ A} as the absolute value, (2.26)

A+ := max{0, A}, (2.27)

A− := min{0, A}. (2.28)

Moreover, the comparison in IV is defined by

A ≤ B iff A ≤ B,

and other relations are defined analogously. Real quantities v are embedded in the
interval quantities by identifying v = v = [v, v].

We call A ∈ IR
n×n symmetric, if Aij = Aji for all i, j, and A is called positive

semidefinite if all A ∈ A have this property.

