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2 PML Parameters and Convergence 
 
 
2.1 Motivation and General Considerations 
 
 
According to the FDFD method the analytical wave equation of electromagnetic (EM) fields, 
given by 2.1, is transformed to a discretized form of wave equation following the 
incorporation of grad div term [6] and symmetrical formulation [7], given by 2.2, that 
describes the EM fields inside the enclosure of a rectangular box containing the structure 
under consideration and thereby defining a boundary value problem (see Appendix 7.1). In 
this matrix form of the discretized wave equation, e

�
 is a vector that contains the electric field 

components for all mesh cells. The system matrix M contains all the information about the 
material properties, dimensions and frequency. b

�
represents in general the source for the 

excitation through waveguide ports or internal ports. In case of the waveguide ports, b
�
 

corresponds to the sum over all transversal electric fields of the available modes at the 
waveguide ports. 
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It is worth to look into the construction of the matrix wave equation closely. The F3D solver 
based on the FDFD method is developed according to a Cartesian coordinate system where 
all the information of the materials, dimensions etc. as well as fields and sources are 
assigned to the matrix and vector elements, respectively, cell by cell, first of all in the x 
direction, then in the y direction and lastly in the z direction as given by the equation of 2.3. 
Mij’s (i, j = x, y, z) are the sub matrices with dimension of n × n, where n is the size of the 
mesh, and ie

�
’s as well as ib

�
’s are the vectors with dimension n. A more comprehensive 

representation of 2.3 is given by 2.4 where ai,j‘s are the elements of matrix M consisting of 
material and dimensional information, ei and bi (i = 1 ... 3n ) represent the field and source 
components corresponding to the vectors e

�
 and b

�
, respectively. It should be noted that M is 

symmetric but not positive definite and consists only of very few diagonals with nonzero 
elements. 
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The matrix equation of 2.4 is solved for the unknowns of ei with an iterative numerical 
algorithm, namely a Krylov-subspace method [10, 15] with the Independent Set Ordering and 
SSOR-preconditioning procedure (see the Appendix 7.7). In this procedure the values of the 
unknowns are updated as long as the unknowns converge to a predefined tolerance.  
 
As the anisotropic PML satisfies Maxwell’s equations, the PML cells become part of the 
bounded region automatically during the discretization. The influence of these anisotropic 
PML cells on the convergence of the iterative solution can be explained with the help of the 
Gerschgorin circles [45]. The union of the Gerschgorin circles of radius ri contains all the 
eigenvalues of the system matrix M, where the radius ri is calculated as the summation of the 
magnitudes of all the non-diagonal elements of the ith row in M given by 2.5. A quantity ρi is 
defined as the ratio between the summation of the magnitudes of all the non-diagonal 
elements and the diagonal element at the ith row in M according to equation 2.6. Again ρmax is 
the maximum value of ρi considering all the rows of the system matrix M given by the 
equation 2.7. Some examples of Gerschgorin circles are shown in Fig. 2.1. 
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Fig. 2.1 Gerschgorin circles with centers at (Im(ai,i), Re(ai,i)).  
 
 
For M to be a positive definite matrix, ρi must be smaller than one, all the eigenvalues must 
lie within the right hand side of the imaginary axis in order to make the iterative solution 
provide a stable convergence. But in the case of FDFD method, M is usually not a positive 
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definite matrix, i.e. the periphery of the circles with some of the eigenvalues extends to the 
left hand side of the imaginary axis which may lead to a bad convergence.  
 
In order to describe the importance and consequences of the parameters of ri , aii and ρi  for 
the numerical convergence of the FDFD method with PML the patch antenna[19] in Fig. 2.6.a 
is examined. It is assumed that the antenna has only one PML (X-PML) boundary followed 
by a magnetic wall in the direction perpendicular to the patch. Other open boundaries are 
terminated by magnetic walls. Under these conditions the antenna is simulated at 16 GHz 
and the parameters ri, aii and ρi are calculated out of the system matrix at each row. The 
same is done for the case with the PML medium replaced by air while keeping the 
discretization scheme the same, this is termed as the case without PML (no PML). The ratios 
between the cases of with PML and without PML for all these three parameters are 
calculated. In each case the ratios which are equal to one, corresponding to the inner mesh 
cells and rows of the system matrix not affected by the PML medium, are excluded. The 
remaining ratios are sampled linearly (counted in stepped ranges) and drawn in Fig. 2.2. 
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Fig. 2.2 Densities of the values given by the ratios of @1, @2 and @3. The total number of 

rows in M is 75816 (=3×27×36×26) and the number of the PML affected rows where the 
ratios given by @1, @2 and @3 are not equal to one is 12273. 

 
 
Looking at Fig. 2.2, it is evident that introducing the PML results in an increased number of 
rows in M where the values of the ratios defined by @1, @2 and @3 are larger than 1.0. In 
addition, the values of @1 are larger than those of @2. This helps to state that the addition of 
the PML wall increases the values of ρi and correspondingly ρmax, which means that the radii 
of the Gerschgorin circles become larger and the possibility of the real parts of the 
eigenvalues to be more negative increases. The outcome is that the condition number grows 
larger and the convergence of the iterative process is more unstable when the PML wall is 
included. In this way the inclusion of the PML wall results in a change in the numerical 
properties of the system matrix and thereby affects the convergence of the solver, i.e., the 
number of iterations. The number of iterations is taken here as a measure for the numerical 
efforts and it is directly proportional to the CPU time needed to obtain the solution.  
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When discussing the numerical consequences of introducing the PML, it is important to have 
a close look on the resulting permittivity and permeability tensors, which are written here as 
the products of the isotropic physical material constants and a tensor [ηηηη] representing the 
PML properties according to [3, 4] (see equations (2.8) and (2.9)). [ηηηη] is a diagonal tensor 
with the complex parameter ηi, the imaginary part of which defines the attenuation and thus 
the residual reflections at the PML (see Fig. 2.3). The nominal reflection coefficient (rth) of 
equation 1.1 can be written in terms of the imaginary part of ηi (Im(ηi)) as 2.10. As 
attenuation and reflection are inversely proportional, attenuation (αth) can be written as 2.11.  
For low reflection, i.e., high attenuation in the PML, the product of |Im(ηi )| and d must be 
large. On the other hand, |Im(ηi )| should not be too large, as the matrix condition depends on 
Im(ηi ). So for higher attenuation as well as better matrix condition a relatively small |Im(ηi)| 
and large d should be chosen. When using PML walls for several outer boundaries, these 
walls overlap at edges and corners as illustrated in Fig. 2.3. In case of the overlapping at the 
edges (e.g. overlapping 1 & 2 ) and corners (overlapping 1, 2 & 3 ) the resulting PML tensor 
is the product of the PML tensors of the individual PML walls that form the edges and 
corners, respectively. 
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Fig. 2.3 PML Tensors [ηηηη] (see equations (2.8) and (2.9)) for PML walls in three directions 

detailing the  overlapping regions. σi denotes the artificial conductivities (electrical) of the 
respective PML wall as derived from a given nominal reflection factor (equation 1.1). 
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The inspection of the tensors according to Fig. 2.3 reveals that, because always both ηi and 
its inverse appear, the PML increases the magnitude range of the material tensors and thus 
that of the resulting entries in the system matrix, which in turn increases the radii of the 
Gerschgorin circles as mentioned above. As these circles contain all the eigenvalues of the 
system matrix, larger radii of those circles means higher possibilities of the real parts of the 
eigenvalues to assume smaller values and thereby worse convergence. This situation 
becomes particularly critical for the overlapping regions since there several factors of the ηi 
are multiplied. In order to demonstrate this, Tab. 2.1 shows typical values for the PML tensor 
elements (based on an example at 1GHz with –60dB nominal reflection). This is the basic 
effect why PML causes the numerical properties to deteriorate but one needs an in-depth 
investigation to better understand the underlying effects and to find the solutions minimizing 
the odds. This is presented in the following sections. 

 
 

|η1| |1/η1| |η2| |1/η2| |(1/η1)η2| |η1η2| |(1/η1)η2η3| |η1(1/η2) 
η3| 

83.0 0.012 75.0 0.013 0.9 6225 67.5 83 
 
Tab. 2.1 Diagonal elements of PML tensors according to Fig. 2.3 (εr of PML wall 1 and 2 are 
       1.0 and 2.2 respectively; σi of PML wall 1 and 2 are 4.6 and 4.2 respectively; μr is 1.0 in  
        all cases; for calculation of σi see [18, 19]). 
 
 
Having known that PML in general worsens the convergence of the iterative solution it is 
investigated quantitatively which parameters of the PML wall affect the convergence mostly 
and how that can be tempered by modifying the PML regions and parameters. The most vital 
modifications and parameters will be discussed separately following some general 
considerations regarding convergence as given below:   
 

1. As already mentioned in chapter 1, the interface of the PML/non PML regions in the 
discretized description of FDFD method results in spurious reflections. This mismatch 
problem can be alleviated by subdividing the PML region into a number of layers with 
varying conductivity [19]. In this point it is important to know the impact of the number 
of PML layers on the convergence. More layers improve of course the accuracy but 
increase the numerical expenses. It is found that a 5-layer configuration provides a 
good compromise and this number is used in all the following investigations.  

 
2. The convergence of the iterative solver is influenced also by the choice of the PML 

backing. Commonly, PML walls are followed by electric or magnetic walls. We found 
that for the structures considered in this work, electric walls lead to a less number of 
iterations than magnetic walls. 

 
3. Adjacent PML and non-PML cells should have sizes of comparable dimensions to 

have the results less erroneous and iterations reduced in number. 
 

4. The number of iterations increases with the increase in |εmax -εmin| and frequency, 
where εmax and εmin are largest and smallest relative dielectric constants within the 
structure. These are general characteristics of the FDFD simulation, independently 
whether PML is included or not. 
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2.2 Overlapping PML Walls 
 
While for a single PML wall the tensor elements are in the range 1/η …η, this becomes 
worse if overlapping regions of two PML walls are included. Assuming that both PML walls 
have the same properties, the tensor elements within the structure now cover the range 1/η 
… 1 … η2

.  Proceeding with 3 overlapping PML regions the overall situation does not change 
from this point of view because the additional elements are of same order (if one assumes 
identical PML properties). To give numbers, Tab. 2.1 shows that for a single PML wall (e.g. 
PML wall 1) the range of tensor elements is (0.012 - 83.0) and when the PML wall 2 is 
included the range of matrix elements extends to (0.012 .. 6225.0).  
 
Going beyond these relatively simple arguments, extensive investigations were performed 
simulating typical microwave structures with different PML configurations. It is found that the 
PML disposition indeed has a drastic influence on the efforts required for solving the system 
of equations. Introducing a single PML wall already leads to a significant increase in the 
number of iterations of the solver (typically a factor of 2). Including overlapping regions with 2 
PML results in further drastic deteriorations (an additional factor >15), which in many cases 
render this approach useless for practical design work. Adding more PML walls with 
overlapping regions, convergence deteriorates further. 
 
It is found that this deterioration of convergence can be alleviated by modifying the PML 
definition in the edge and corner regions. Different ideas have been tested including an 
angle-dependent description and the insertion of additional physical conductivities in the PML 
formulation for numerical stabilization. All these approaches did not yield the desired 
improvements. The best solution turned out is to avoid any overlapping. Avoiding the 
overlapping PMLs is carried out by disjoint PMLs (called non-overlapping PML) where the 
edges and corners are replaced by the complete PML walls. Since the edges and corners 
form only a very small fraction of the overall PML surface, the reflections occurring there 
remain negligible in most cases and one can use a PML with attenuation in a single direction 
instead. Fig. 2.4 illustrates this idea of non-overlapping PML for the edge case. When PML 1 
overrides PML wall 2, it is referred to as “12” orientation in the following and vice versa. 
 
 

                                
 
Fig. 2.4  Edge of the structure according to Fig. 2.3 with non-overlapping (disjoint) PML walls 
          illustrating 2 possibilities of edge description. 
 
This approach to circumvent the problem with overlapping PMLs proves its effectiveness for 
various structures like patch antenna, microstrip, flip-chip or LTCC structures. The 



Chapter 2                                                                                           PML Parameters and Convergence   

 - 19 - 

investigations of how the inclusion of PML (overlapping) and non-overlapping PML influences 
the matrix elements, and thereby the convergence of the iterative solution will be presented 
in the following dealing a micro-strip line and a patch antenna. 
 
The micro-strip structure of Fig. 2.5.a is simulated at 20 GHz first of all without any PML wall. 
In order to keep the mesh the same for all the simulations, the PML walls are not just 
excluded from the structure, rather the tensor elements of the PML walls are made unity (η = 
1.0) in order to represent the case without PML. In this case the PML cells are there but not 
filled with PML material. The density distribution of the non-zero matrix elements as a 
function of magnitudes is shown in Fig. 2.5.b. 
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Fig. 2.5 a) The micro-strip (MS) surrounded by PML walls on all sides other than the port. The 
          MS is 10 μm thick and 50 μm wide. The substrate (εr = 9.8) is 100 μm thick. The PML 
          walls consisting of 5 layers with variable thicknesses have an overall reflection error of 
          -70dB and parabolic spatial variation of the conductivities. 
 
          The density of the matrix elements aij in relation to their magnitudes for the case without 
          PML walls (b), with PML walls including the overlapping regions (c) and with 
          non-overlapping PML walls (d). In (d) graphs in (b) and (c) are redrawn for comparison. 
          The lowest and largest values of the magnitudes are in (b) 1.74E-02 and 845.62, in (c) 
          7.54E-05 and 7584.38, and,  in (d) 7.4E-05 and 1994.16 respectively. 
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