Inhaltsverzeichnis

1	Einleitung						
	1.1	Anwer	ndungen und Perspektiven	4			
	1.2	Ziele o	lieser Arbeit und Gliederung	5			
2	Gru	indlage	en abstimmbarer und Oberflächen-emittierender Laser	7			
	2.1	Fabry	-Pérot-Resonatoren und ihre Abstimmung	9			
		2.1.1	Abstimmung der Resonanzwellenlänge	11			
		2.1.2	Bragg-Spiegel und effektive Eindringtiefe	12			
	2.2	Reson	atorgeometrie und Modenverhalten	17			
		2.2.1	Gaußstrahl und Faserkopplung	17			
		2.2.2	Transversalmoden höherer Ordnung und ihre Aufspaltung	19			
	2.3	Grund	llegende Eigenschaften Oberflächen-emittierender Laser	22			
		2.3.1	Bauelementstruktur	22			
		2.3.2	Verlustmechanismen und Umlaufbedingung	23			
		2.3.3	Ratengleichungen und Ausgangsleistung	24			
		2.3.4	Füllfaktor (Confinement-Faktor)	25			
	2.4	Erweit	terte Eigenschaften Oberflächen-emittierender Laser	26			
		2.4.1	Dynamik und Modulationsverhalten	26			
		2.4.2	Relatives Intensitätsrauschen (RIN)	28			
		2.4.3	Polarisation	28			
		2.4.4	Nichtlineare Effekte	30			
		2.4.5	Linienbreite und Verbreiterung	31			
		2.4.6	Linienverbreiterungsfaktor $\alpha_{\rm H}$	33			
3	Entwurf mikromechanisch abstimmbarer VCSEL 3						
	3.1	Bauele	ementstruktur und Konfigurationen	36			
		3.1.1	Resonante Konfiguration mit gekoppelten Resonatoren (SCC)	37			
		3.1.2	Konfiguration mit entkoppelten Resonatoren (EC)	39			
		3.1.3	Neben-resonante Konfiguration (ACC)	40			
	3.2	Aktive	er Halbleiter-Resonator (Halb-VCSEL)	40			
		3.2.1	Halbleiter-Resonator und aktive Zone (Basisstruktur)	40			
		3.2.2	Tunnelkontakt und Überwachsung	41			
		3.2.3	Wellenführung	43			
		3.2.4	Unterseitiger dielektrischer Bragg-Spiegel	44			
		3.2.5	Spektrale Gewinnverteilung	46			

		3.2.6 Laterale Gewinnverteilung							
	3.3	Dimensionierung abstimmbarer VCSEL							
		3.3.1 Übersicht der Laserparameter							
4	Mik	Mikromechanik und Aufbautechnik 53							
	4.1	Technologie der Mikromechanik							
		4.1.1 Ausgangsmaterial $\ldots \ldots \ldots$							
		4.1.2 Prozessschritte							
	4.2	Biegeverhalten und statische Auslenkung							
	4.3	Dynamik der Mikromechanik							
	4.4	Mechanische Verspannung dielektrischer DBR							
	4.5	Aufbau- und Verbindungstechnik							
		4.5.1 Packaging und Klebstoff-Bondtechnik							
		4.5.2 Hochfrequenz-Aufbauten							
	4.6	Zusammenfassung und Ausblick							
5	Cha	rakterisierung und Ergebnisse 73							
	5.1	MEMS-VCSEL mit hoher Ausgangsleistung							
		5.1.1 Temperaturverhalten $\ldots \ldots .$							
	5.2	Weit abstimmbare MEMS-VCSEL							
	5.3	Fernfeld							
		5.3.1 Messaufbau $\ldots \ldots \ldots$							
		5.3.2 Ergebnisse							
		5.3.3 Kontrolle der Transversalmoden							
	5.4	Kleinsignal-Modulation (AM) 88							
		5.4.1 Optimierung $\ldots \ldots $							
	5.5	Relatives Intensitätsrauschen (RIN)							
	5.6	Polarisation							
		5.6.1 Nichtlineare Effekte							
	5.7	Linienbreite							
		5.7.1 Verzögertes Selbst-Heterodyn-Messverfahren							
		5.7.2 Ergebnisse und Diskussion $\ldots \ldots \ldots$							
	5.8	Linienverbreiterungsfaktor $\alpha_{\rm H}$							
	5.9	Abstimmgeschwindigkeit und Schaltzeiten							
	5.10	Zuverlässigkeit und Lebensdauer							
	5.11	Zusammenfassung und Ausblick							
6	Mo	denverhalten im Vergleich von Experiment und Modellierung 119							
	6.1	Elektromagnetische VCSEL Modellierung							
	6.2	Modellierung des MEMS-VCSELs							
		6.2.1 Sphärischer MEMS-DBR und langer Luftspalt							
		6.2.2 Modenaufspaltung und Einfluss des Rückspiegels							
		6.2.3 Entwicklungskoeffizienten und Modenfelder							
	6.3	Vergleich von Simulation (VELM) und Messung							
		6.3.1 Abstimmcharakteristik und Schwellgewinn							

	64	6.3.2 Gewinnunterschied und Nebenmodenunterdrückung	$135 \\ 137$			
	6.5	Geometrische Anisotropie und Polarisation	. 138			
	6.6	Justagetoleranz	. 141			
	6.7	Zusammenfassung und Ausblick	. 142			
7	Sensoranwendungen					
	7.1	Absorptionsspektroskopie zur Gassensorik	. 145			
		7.1.1 TDLAS-Messprinzip	. 146			
		7.1.2 Experimenteller Aufbau	. 147			
		7.1.3 Ergebnisse und Diskussion	. 151			
		7.1.4 Messung von Verbrennungsprozessen	. 155			
	- 0	7.1.5 Zusammenfassung und Ausblick	. 157			
	7.2	Faser-Bragg-Gitter (FBG)-Sensoren	. 159			
		7.2.1 FBG-Messprinzip	169			
		7.2.2 FBG-Abirageeinneit mit abstimmbarem VCSEL	102			
		7.2.5 Definitingsmessung und Ausblick	104 166			
	7.3	Weitere Anwendungen	167			
	1.0		. 101			
8	Zus	sammenfassung und Ausblick				
	8.1	Ausblick	. 170			
\mathbf{A}	Bre	echungsindizes im Materialsystem InGaAlAs/InP 17				
В	Übe	Übersicht DBR- und VCSEL-Wafer				
\mathbf{C}	Übersicht der verwendeten Masken					
D	0 MEMS-Prozess					
Е	Fornfold Mogaplatz					
Ľ	E 1	LabView-Ansteuerung	187			
	E.2	Matlab-Programm zur Auswertung	. 189			
\mathbf{F}	Ver	wendete Abkürzungen und Formelzeichen	191			
Li	Literaturverzeichnis					
Ei	Eigene Veröffentlichungen					
Le	Lebenslauf					
	Lovousiaa					