

Stefan Emil Vogel (Autor) Simulation of Lifted Diesel Sprays Using a Combined Level-Set Flamelet Model

https://cuvillier.de/de/shop/publications/1096

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

1	Intro	ntroduction					
2	Description of the flow field 2.1 Flow-field equations						
	2.2	Description of the turbulent flow and mixing field	6				
		2.2.1 Scales of turbulent flows	6				
		2.2.2 Averaging of turbulent flows	7				
		2.2.3 Favre ensemble averaged flow equations	9				
3	Liquid Phase 1						
	3.1	Physical description of the liquid phase	13				
		3.1.1 Classification of breakup	14				
	3.2	Used breakup models	17				
		3.2.1 Linear normal-mode analysis, wave model (Kelvin-Helmholtz) .	17				
		3.2.2 The Rayleigh-Taylor breakup model	17				
4	Deta	ailed chemistry used in this thesis	19				
-	4.1	Chemical mechanism	19				
	4.2	Laminar flame speeds	19				
	4.3	Nitrogen-oxide model	23				
	4.4	Soot model	25				
		4.4.1 Formation of the first polycyclic hydrocarbons	25				
		4.4.2 Formation and growth of PAHs	25				
		4.4.3 Soot formation	25				
5	Cou	upling of chemistry and turbulent flow	29				
Ŭ	5.1	Premixed combustion	29				
	0.1	5.1.1 Physics of laminar flame propagation	29				
		5.1.2 Physics of turbulent flame propagation	32				
		5.1.2 Progress-variable approaches	36				
	52	The level-set approach	37				
	0.2	5.2.1 The level-set approach for laminar flames	37				
		5.2.2 The level-set approach for turbulent flames	30				
	53	Physics of non-premixed combustion	41				
	0.0	5.3.1 The Characteristic Time-Scale Model	41				

		5.3.2 5.3.3	Laminar Chemistry	. 42
	5.4	The fl	amelet model for non-premixed conditions	· 42
	0.1	541	Definition of the mixture fraction	. тт ДД
		5.4.1	Flamelet equations	· 11 45
		5.4.2	General interaction between turbulent flow and chemistry	. 1 0 48
		5.4.0	Multiple flamelets using cell mass as tracer	. 10 52
		545	Multiple injected Representative Interactive Flamelet (MRIF)	. 02
		0.4.0	using fuel as tracer	54
	5.5	G-equ	ation coupled with MRIF (G-MRIF)	. 54 . 57
6	Sim	ulation	s of sprays in the Aachen vessels	63
	6.1	Exper	imental setup	. 63
	6.2	Spray	characterization performed at the Lehrstuhl für Wärme- und Stof-	
		fübert	ragung (WSA)	. 64
	6.3	OH ai	ad soot measurements performed at the LTFD	. 65
	6.4	Simul	ations using the newly developed G-MRIF model	. 66
	6.5	Simul	ations of Aachen data using G-MRIF	. 72
		6.5.1	Lift-off length comparison	. 72
		6.5.2	3D soot comparison	. 77
		6.5.3	Comparison of soot and original fuel mass in integrated values	. 81
		6.5.4	OH comparison	. 91
	6.6	Inject	ion-rate investigation	. 95
	6.7	Concl	usion of the Aachen investigation	. 106
7	Sim	ulation	of sprays in the Sandia National Laboratories (SNL) vessel	107
	7.1	Exper	imental setup	. 107
	7.2	ations	. 107	
	7.3	simulation results	. 109	
		7.3.1	Comparison of soot and original fuel mass in integrated values	
			for the temperature variation	. 115
		7.3.2	Comparison of soot and original fuel mass in integrated values	
			for the density variation	. 117
		7.3.3	Comparison of soot and original fuel mass in integrated values	
			for the O_2 variation	. 119
		7.3.4	Comparison of soot and original fuel mass in integrated values	
			for the nozzle-diameter variation	. 121
		7.3.5	Comparison of soot and original fuel mass in integrated values	
			for the temperature variation of the 180 μ m nozzle \ldots \ldots	. 123
	7.4	Concl	usion of the SNL investigation	. 125
8	Sun	nmary a	and conclusion	127

Α	Acronyms	139
В	Simulation of the spray development in the Aachen vessel	141
С	Simulation of the spray development in the SNL vessel	147