
1 Introduction

In the field of spin electronics (spintronics) the spin of the electron is used as a further degree of
freedom. The ongoing interest in spintronic devices is fueled by the predicted velocity of operation
and the enhanced functionality. Spin related phenomena like the giant magnetoresistance [Bai88,
Bin89], the tunneling magnetoresistance [Jul75, Moo95], and the anisotropic magnetoresistance
[Rij95, Rij97, Ste04] have already gained industrial success and are used in hard disk read heads,
magnetic random access memories, and in magnetic field sensors.
The most prominent spintronic device is the spin transistor suggested by Datta and Das [Dat90].
Recently, this device has been patented in the United States of America by Saito et al. and has
been assigned to Toshiba [Sai05]. Two ferromagnetic electrodes used as spin injector and spin
detector are separated by a semiconductor with a two-dimensional electron gas (2DEG). Once in-
jected into the 2DEG the spin-polarized current can be controlled with a gate electrode via the
Rashba spin-orbit interaction [Ras60, Byc84]. Towards the realization of the spin transistor, three
main obstacles have to be overcome, namely, the spin injection, the spin control and the spin
detection. Recent experiments have shown the tunability of the spin-orbit interaction without
changing the charge carrier density [Gru00, Sch05]. For these experiments semiconductor het-
erostructures with an ingrown back-gate and a conducting InAs/In0.75Ga0.25As channel have been
used. Spin injection into semiconductors has been proven in experiments with optical detection of
the spin polarization. The circular polarized light of an integrated light-emitting diode has been
used as a measure for the spin-injection rate [Fie99]. In later experiments either Schottky barriers
[Zhu01, Ram02, Han02] or oxide tunnel barriers [Mot02] have been used to increase the spin-
injection efficiency from a ferromagnetic electrode into a semiconductor. The quest for electrical
spin detection in semiconductors or in normal metals is still in its infancy. Only in a very limited
number of experiments with all-metal hybrid systems spin detection has been proven successfully
[Jed02, Kim05]. In a theoretical work it has been shown that the spin-injection efficiency is poor
unless the spin polarization of the electrodes is 100 % [Sch00]. The so-called Heusler alloys are
promising candidates for electrode materials with high spin polarization [vO05]. Another approach
towards increased spin-injection rates is the implementation of oxide tunnel barriers at the inter-
faces as in the optical experiments. The increase is predicted by a theory for the diffusive transport
regime [Ras02].
The present work focuses on all-metal spin-valve devices consisting of two ferromagnetic permal-
loy electrodes and an interconnecting aluminum strip. The micromagnetic behavior of the elec-
trodes has been investigated and optimized with a magnetic-force microscope. Transport mea-
surements of spin-valve devices with clean interfaces have been performed at liquid helium tem-
peratures. Three different contributions to the magnetoresistance of the entire device have been
identified, namely, the anisotropic magnetoresistance, the local Hall effect, and the spin-valve ef-

1



1 Introduction

fect. Aluminum oxide tunnel barriers have been prepared and characterized in non-magnetic tunnel
junctions as groundwork for future experiments. These will investigate the electrical spin detec-
tion in normal metals and in semiconductors of hybrid spin-valve devices with integrated tunnel
barriers.
This thesis is organized as follows: the second chapter introduces the theoretical background of
tunnel barriers, anisotropic magnetoresistance, and spin injection in the diffusive transport regime.
In chapter 3, the measurement techniques and the preparation of the tunnel junctions and the spin-
valve devices are described. Chapter 4 presents the results of the tunnel junctions. The micro-
magnetic behavior of permalloy electrodes and of permalloy rings is discussed in chapter 5. Then,
chapter 6 shows the transport measurements of the spin-valve devices and an outlook on future
experiments is given. The conclusions of this thesis are presented in chapter 7.
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2 Theoretical background

In this chapter an introduction to the theoretical background of the experiments performed during
this thesis is given. First the transport of electrons through thin tunnel barriers is described. Then
the mechanism of the anisotropic magnetoresistance in ferromagnetic materials is sketched. Fi-
nally the theory of spin injection and detection in ferromagnet/normal metal hybrid devices in the
diffusive regime is presented.

2.1 Tunnel barriers

Two metallic electrodes are assumed to be separated by a thin tunnel barrier. In the classical
understanding of charge transport a current flow is inhibited due to a potential barrier. This barrier
is higher than the Fermi energies of both electrodes. With their pioneering experiments Fisher and
Giaever have proven that a current flows due to the quantum mechanical tunnel effect [Fis61]. The
Nobel Prize in Physics 1973 has been awarded one quarter each to Esaki and Giaever and one half
to Josephson for their discoveries of tunneling phenomena in solids.
The transition probability per time of an electron from the electrode a into the electrode b for a
given transverse momentum kt and total energy E can be written as

Pab(E,V ) =
2π
h̄
|Mab(E)|2ρb(E − eV ) fa(E)[1− fb(E − eV )]. (2.1)

Mab(E) is the matrix element for the transition, ρb(E) is the density of states in electrode b, f (E) is
the Fermi distribution function, and V is the bias voltage applied across the tunnel barrier [Har61].
The integral over all states for a fixed transverse momentum kt and the sum over all kt multiplied
by a factor 2 for both spin directions and by the elementary charge e results in the current density
from electrode a to electrode b:

ja→b(V ) =
4πe

h̄ ∑
kt

∫ ∞

−∞
|Mab(E)|2ρa(E)ρb(E − eV ) fa(E)[1− fb(E − eV )]dE. (2.2)

The current density jb→a for the inverse process, i.e., tunneling from electrode b to electrode a,
equals ja→b except that fa(E) and fb(E − eV ) are interchanged. The difference leads to the total
current density through the tunnel barrier:

j(V ) = ja→b − jb→a =
4πe

h̄ ∑
kt

∫ ∞

−∞
|Mab(E)|2ρa(E)ρb(E − eV )[ fa(E)− fb(E − eV )]dE. (2.3)

Solving this integral is the main obstacle in finding a handy expression for the description of the
current through tunnel barriers. In the following, two solutions derived by different approaches
from Simmons [Sim63] and Brinkman et al. [Bri70] are presented.
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Fig. 2.1: (a) Sketch of a rectangular tunnel barrier (I) of thickness s between two metallic elec-
trodes (M). The Fermi energy EF in the electrodes lies in the band gap of the insulator (hatched).
The barrier height ϕ0 is the difference between EF and the upper edge of the band gap of the
insulator. (b) A bias voltage V is applied to the tunnel barrier. (c) Sketch of a trapezoidal barrier
at zero bias. ϕ̄ is the average barrier height and ∆ϕ is the barrier asymmetry. (a) and (b) belong
to Simmons’s theory and (c) to Brinkman’s theory.

With the assumption of a rectangular barrier of thickness s, see Fig. 2.1(a) and (b), Simmons
has found the current-voltage characteristic for intermediate voltages, i.e., the applied voltage V
multiplied by e has to be smaller than the barrier height ϕ0:

I(V ) =
eA

2πhs2

(
ϕ0 − eV

2

)
exp

(
−α s

√
ϕ0 − eV

2

)

− eA
2πhs2

(
ϕ0 +

eV
2

)
exp

(
−α s

√
ϕ0 +

eV
2

)
. (2.4)

A is the cross-sectional area of the tunnel contact, h is Planck’s constant, m is the mass of the
electron, and the constant α is defined as α = 4π

√
2m/h. The opposite signs of the two terms on

the right side originate from the bidirectional tunneling.
Brinkman et al. have assumed trapezoidal barriers, see Fig. 2.1(c). They have calculated the tun-
neling current numerically and have found a parabolic dependency between the differential con-
ductivity dG(V ) and the applied bias voltage for low voltages (� 0.4V ):

dG(V )
G(0)

= 1−
(

C∆ϕ
16ϕ̄

3
2

)
eV +

(
9

128
C2

ϕ̄

)
(eV )2 (2.5)

with C =
4s
√

2m
3h̄

and G(0) =
e2A

√
2mϕ̄

h2s
exp
(
−2s

h̄

√
2mϕ̄

)
.

∆ϕ is the asymmetry of the barrier, ϕ̄ is the average barrier height, and G(0) is the differential
conductivity at zero bias. Figure 2.2(a) shows the well known shape of the tunneling current
versus the applied bias voltage for an exemplary set of parameters A = 8×8 µm2, s = 1 nm and
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(a) (b)

Fig. 2.2: (a) Current-voltage dependency of a tunnel barrier calculated with Eq. 2.4. The pa-
rameters used are the cross-sectional area A = 8×8 µm2, the thickness s = 1 nm and the barrier
height ϕ0 = 2.25 eV. In (b) the differential conductivity calculated with Eq. 2.5 is plotted versus
the bias voltage with the same parameters (average barrier height ϕ̄ = ϕ0) as in (a) and a barrier
asymmetry ∆ϕ = 0.

ϕ0 = 2.25 eV calculated with Eq. 2.4. The differential conductivity calculated with Eq. 2.5 with
the same parameters (ϕ̄ = ϕ0) and ∆ϕ = 0 is plotted in Fig. 2.2(b). The equation from Brinkman
et al. is more convenient for a fit of the experimental data for two reasons. First a possible barrier
asymmetry is considered in contrast to Simmons’s equation. This is necessary to fit data which is
asymmetric to the origin. Secondly, there are more advanced fit algorithms for parabolas leading
to more reliable fit parameters. The characteristic parameters of a tunnel barrier are obtained
from the coefficients of the fit of the differential conductivity as follows. The parabolic fit of the
experimental data yields the coefficients K0(ϕ̄,s), K1(ϕ̄,∆ϕ,s), and K2(ϕ̄,s):

dG(V ) =
dI
dV

= K0(ϕ̄,s)+K1(ϕ̄,∆ϕ,s)V +K2(ϕ̄,s)V 2. (2.6)

With the following equations these coefficients produce the average height, the thickness, and the
asymmetry of the tunnel barrier:

ϕ̄ =
e
4

√
K0

2K2

∣∣∣∣ln
(√

K0K2
h3

√
2e3mπA

)∣∣∣∣ ,
s =

2h̄
e

√
K2

K0

ϕ̄
m

, (2.7)

∆ϕ = −K1

K0

12h̄ϕ̄
3
2√

2mes
.

2.2 Anisotropic magnetoresistance

The anisotropic magnetoresistance (AMR) occurs in ferromagnetic materials and their alloys. Fer-
romagnetism originates from the spin imbalance of the spin-up and spin-down electrons. In the
3d-transition metals, the 4s-electrons can be assumed as free charge carriers and contribute mainly
to the conductivity of these metals. The 3d-electrons can be considered as more localized to the
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nuclei [Zen51a, Zen51b]. Due to the exchange energy the density of states of the spin-up electrons
(N↑) is shifted downwards and the density of states of the spin-down electrons (N↓) is shifted up-
wards. Therefore more spin-up electrons are present resulting in a magnetization M in the absence
of an external magnetic field and for temperatures below the Curie temperature:

M = g
µB

V
(N↑ −N↓). (2.8)

g is the electron g-factor, µB is the Bohr magneton and V is the volume of the sample.
The AMR originates from scattering of the 4s-electrons at atomic orbitals. The scattering is more
pronounced when the velocity vector and the local magnetization vector are parallel. The overall
resistance of a sample which consists of a single domain is

R = R⊥ +∆RAMR cos2(θ). (2.9)

R⊥ is the resistance with the current density vector and the magnetization vector aligned perpendic-
ular, ∆RAMR is the maximum resistance change, and θ is the angle between the current density vec-
tor and the magnetization vector. The resistance in the parallel case (θ = 0) is R‖ = R⊥ +∆RAMR.
For a detailed description of the AMR see [Rij95, Rij97, Ste04, Bol05].

2.3 Spin injection

In the diffusive transport model a current flowing from a ferromagnet (F) into a normal metal (N)
creates a spin polarization in the normal metal. A sketch of a F/N interface is depicted in Fig. 2.3(a).
Because of different conductivities of spin-up and spin-down electrons in the ferromagnet, the
chemical potentials of both kinds of charge carriers are split up at the interface. Therefore the
spin polarization of a ferromagnet can be partly transferred into a normal metal within the spin-
relaxation length λN of the normal metal [vS87]. With a F/N/F structure (Fig. 2.3(d)) both, electri-
cal spin injection and detection, can be realized in a single device if the length of the normal metal
is in the order of λN .

F/N interface

The spin-relaxation length of the electrons is assumed to be much longer than their mean free path.
Then the electron transport can be described in a two-current model in which the spin-up and spin-
down electrons conduct independently. Therefore, one can define two different current densities
j↑,↓ and conductivities σ↑,↓. By using Ohm’s law the gradients of the chemical potentials of the
spin-up and spin-down electrons are

∂ µ↑,↓
∂x

(x) = − e
σ↑,↓

j↑,↓(x). (2.10)

In this particular consideration we assume the charge transport to be only in x-direction. The
density of states at the Fermi energy can be written as ρ↑,↓ = ∂n↑,↓(x)/∂ µ↑,↓(x) for small deviations
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Fig. 2.3: (a) Sketch of a F/N interface. The spatial dependencies of the chemical potentials of the
spin-up (dashed lines) and spin-down electrons (dotted lines), converted to voltages, are depicted
in (b). Plotting the course of the chemical potentials without the linear parts of the solution the
splitting of the chemical potentials become apparent in (c). The solid lines denote the resulting
average chemical potentials. The interface is located at x = 0. (d) Sketch of a F/N/F device. In
(e) and (f) the chemical potentials without the dominant linear parts are plotted for the parallel
and the antiparallel configuration of the magnetizations of the ferromagnetic electrodes. The F/N
interfaces are at x = 0 and x = 350 nm.

of the chemical potential from the Fermi energy. n(x) is the non-equilibrium part of the particle
density. Integration yields

µ↑,↓(x) =
n↑,↓(x)

ρ↑,↓
+ µ0(x) (2.11)

with µ0(x) as the chemical potential in equilibrium. The spin polarization of the bulk current is
defined as

α =
j↑ − j↓
j↑ + j↓

(2.12)

which, regarding the boundary condition of charge conservation j = j↑+ j↓, equals the expressions
j↑,↓ = (1±α) j/2. Note that these expressions are only valid in the bulk. In bulk materials the
chemical potentials µ↑ and µ↓ equal each other and lead to the generally valid conductivities of the
spin-up and spin-down electrons σ↑,↓ = (1±α)σ/2. Obviously the spin polarization of the bulk
current in the normal metal is zero (αN = 0) and thus spin-up and spin-down electrons contribute to
the total conductivity one half each. The electron transport is in the diffusive regime. Combining
Fick’s law and Eq. 2.10 gives a correlation between the conductivity and the diffusion constant D:

σ↑,↓ = e2ρ↑,↓D↑,↓, with D↑,↓ =
1
3

vF↑,↓l↑,↓, (2.13)
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where vF is the Fermi velocity and l is the mean free path of the electrons. Finally the particle
conservation has to be regarded:

∂ j↑(x)
∂x

= −en↑(x)
τ↑↓

+
en↓(x)

τ↓↑
= −∂ j↓(x)

∂x
. (2.14)

τ−1
↑↓ is the spin-flip rate from spin-up to spin-down states and τ−1

↓↑ is the rate vice versa. These are
connected with the density of states at the Fermi energy via

ρ↑
τ↑↓

=
ρ↓
τ↓↑

, (2.15)

i.e., in equilibrium no net spin flip takes place. Combining Eqs. 2.10, 2.11, and 2.13 to 2.15 the
diffusion equation for the splitting of the chemical potentials is obtained:

(µ↑ −µ↓)
τF,N

= DF,N
∂ 2(µ↑ −µ↓)

∂x2 . (2.16)

The diffusion constant D = (1 + α)D↓/2 + (1−α)D↑/2 is a weighted average of the diffusion
constants of the spin-up and spin-down electrons and τ−1

s f is the sum of the spin flip rates τ−1
↑↓ and

τ−1
↓↑ . The spin-relaxation length is defined as λ =

√
Dτs f . The general solution of the diffusion

equation is:

µ↑(x) = AF,N + BF,N x +
CF,N

σ(F,N)↑
exp
(
− x

λF,N

)
+

DF,N

σ(F,N)↑
exp
(

x
λF,N

)
(2.17)

µ↓(x) = AF,N + BF,N x − CF,N

σ(F,N)↓
exp
(
− x

λF,N

)
− DF,N

σ(F,N)↓
exp
(

x
λF,N

)
. (2.18)

The coefficients AF,N , BF,N , CF,N , and DF,N have to be determined in the ferromagnet (index F) and
in the normal metal (index N). Therefore, the equality of µ↑ and µ↓ far away from the interface and
the continuity of both chemical potentials and current densities at the interface have to be regarded
as boundary conditions. For convenience one defines

RN =
λN

σN
and RF =

λF

(1−α2
F)σF

. (2.19)

For a F/N interface located at x = 0 the particular solution in the ferromagnetic region (x < 0) is

µ↑(x) = AN +
α2

FRNRFe j
RN +RF

− e j
σF

x +
αF(1−αF)RNRFe j

RN +RF
exp
(

x
λF

)
(2.20)

µ↓(x) = AN +
α2

FRNRFe j
RN +RF

− e j
σF

x − αF(1+αF)RNRFe j
RN +RF

exp
(

x
λF

)
(2.21)

and in the normal metal region (x ≥ 0)

µ↑(x) = AN − e j
σN

x +
αFRNRFe j

RN +RF
exp
(
− x

λN

)
(2.22)

µ↓(x) = AN − e j
σN

x − αFRNRFe j
RN +RF

exp
(
− x

λN

)
. (2.23)
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The parameter AN is open and can be set to zero. Figure 2.3(a) shows a sketch of a F/N inter-
face. The chemical potentials for a typical set of parameters (αF = 0.37, σF = 3.7×106 Ω−1m−1,
σN = 8.6×106 Ω−1m−1, λF = 5 nm, λN = 120 nm, and j = 50 µA/(25 nm×600 nm)) are plotted
in Fig. 2.3(b) and (c). For direct comparison with the experimental values the chemical poten-
tials are converted to voltages. In Fig. 2.3(b) the splitting of the chemical potentials can hardly
be resolved because of the dominant linear parts of µ↑ and µ↓ generated by the spin-independent
conductivities σF and σN . Therefore these linear contributions are subtracted in Fig. 2.3(c) in order
to make the spin-dependent effects visible. The average chemical potential which can be measured
with voltage probes is defined as µ0 = (1+α)/2×µ↑+(1−α)/2×µ↓. It is depicted in Fig. 2.3(b)
and (c) as solid lines. While the chemical potentials of the spin-up and the spin-down electrons
have to be continuous, the average chemical potential is split up at the interface. This splitting

∆µFN =
α2

FRNRF

RN +RF
e j (2.24)

leads to a spin dependent contact resistance ∆R = ∆µFN/eI. The spin polarization of the current
at the interface is

PFN =
αFRF

RN +RF
. (2.25)

For the typical set of parameters mentioned above one obtains a spin polarization of 3.7 %.

F/N/F structure

In a F/N/F structure two ferromagnetic electrodes are separated by a normal metal of length L,
see Fig. 2.3(d). The solution of the diffusion equation (Eq. 2.16) for this device is analogous
to the solution for the F/N interface. In this case the continuity of the chemical potentials and
the current densities have to be regarded at both interfaces at x = 0 and x = L. The chemical
potentials µ↑ and µ↓ for the parallel and the antiparallel configuration of the magnetizations of the
two ferromagnetic electrodes are listed in detail in Appendix A. They are sketched, converted to
voltages, in Fig. 2.3(e) and (f) for the same set of parameters which have already been used for
the F/N interface. The length L of the normal metal is set to 350 nm. As discussed for the F/N
interface the dominant linear parts of the solution are subtracted in Fig. 2.3(e) and (f). The sum of
the two splittings of the average chemical potentials at the two interfaces is

µ↑↑ =
2α2

FRNRF sinh(L/2λN)
RN sinh(L/2λN)+RF cosh(L/2λN)

e j (2.26)

for the case of parallel orientation of the magnetizations and

µ↑↓ =
2α2

FRNRF cosh(L/2λN)
RN cosh(L/2λN)+RF sinh(L/2λN)

e j (2.27)

for the antiparallel case. As the linear parts of the average chemical potential are spin independent
and thus do not change when the magnetizations of the ferromagnetic electrodes are changed the
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