
Chapter 1

Probabilistic Knowledge Space
Theory

In 1985, Jean-Paul Doignon and Jean-Claude Falmagne introduced Knowledge
Space Theory (briefly, KST; Doignon & Falmagne, 1985). For a detailed treatise
on KST refer to the monograph Knowledge Spaces by Doignon & Falmagne (1999).
Reviews of KST are provided by Falmagne (1989b) and Falmagne et al.1 (1990).
Further references on KST can be obtained at http://wundt.uni-graz.at/; see
also the references listed in Remarks, 4 at the end of Section 1.2.

This chapter reviews some of the basic concepts of KST. The main concern is
to give an introduction to general (!) probabilistic knowledge structures. Special
emphasis is put on the modeling process as formal methods are introduced to
model (unobservable) psychological assumptions in the light of (observable)
heuristics, i.e.2 data. In Section 1.1, we review some of the basic deterministic
concepts of KST relevant for the discussion of general probabilistic knowledge
structures. This includes knowledge structures, (quasi ordinal) knowledge spaces,
and surmise relations. Their interpretations within the educational context are
sketched briefly. Section 1.1 ends with the Birkhoff-Theorem providing a linkage
between quasi ordinal knowledge spaces and surmise relations on a fixed item set.
Section 1.2 covers some of the basic probabilistic concepts of KST. Probabilistic
knowledge structures are introduced, and, based on this, we review two general
probabilistic models for response data, the basic probabilistic model, and the
basic local independence model. The class of so-called stochastic learning paths
models is mentioned only marginally. Brief remarks on the interpretation and
dimensionality of the probabilistic models reviewed supplement Section 1.2.

1The abbreviation “et al.” stands for “and others (et alii)”.
2The abbreviation “i.e.” stands for “that is (id est)”.
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1.1 Knowledge Structures and Spaces, and Sur-

mise Relations

Section 1.1 covers some of the basic deterministic concepts of KST. We only
focus on those concepts that are relevant for the discussion of general probabilistic
knowledge structures.

Definition 1.1. A knowledge structure is a pair (Q,K) with Q a non-empty set,
and K a family of subsets of Q containing at least the empty set ∅ and Q. The
set Q is called the domain of the knowledge structure. The elements q ∈ Q,
resp.3 K ∈ K, are referred to as (test) items, resp. knowledge states. With abuse
of terminology, we also say ”K is a knowledge structure on Q”.

The set Q is supposed to be a set of dichotomous (also, bi-valued) items, i.e.,
items with two possible response categories. For instance, Q could be a set of
questions/problems in an examination on Euclidean geometry each of which a
subject can either solve or fail to solve; or, Q could represent a set of statements
in a questionnaire with each of which a subject can either agree or disagree.
Throughout, in this dissertation, we use the first interpretation of Q as a set of
bi-valued questions/problems that can either be solved (coded as 1) or not solved
(coded as 0). Here, ”solved” and ”not solved” stand for the observed responses
of a subject (the manifest level). This has to be distinguished from a subject’s
actual unobservable knowledge of the solution to an item (the latent level). In
the latter case, if a subject actually (latently) knows resp. does not know the
solution to the item, we say that the subject masters (also coded as 1) resp. does
not master (also coded as 0) the item.

For a set X, let 2X denote its power-set, i.e., the set of all subsets of X.
Let further |X| stand for the cardinality of X. The actually observed responses
of a subject to the items in Q can be represented by the subset R ∈ 2Q of Q,
containing exactly the items in Q that are correctly solved by the subject, i.e.,
he/she solves the items in R, and fails to solve the items in the complement
Q \ R := {q ∈ Q : q �∈ R} of R. This subset, R, is called the response pattern
of the subject. In particular, the power-set 2Q constitutes the set of all possible
response patterns. Thus, there are |2Q| = 2|Q| possible response patterns.

Similarly, the actual latent state of knowledge of a subject with respect to the
items in Q is represented by the subset K ⊂ Q, containing exactly the items in
Q the subject is capable of mastering. This subset, K, is called the knowledge
state of the subject. Given a knowledge structure (Q,K), it is assumed that the
only states of knowledge possible are the ones in K. In this sense, K captures
the organization of the knowledge (K, a knowledge structure). In particular, in

3The abbreviation “resp.” stands for “respectively”.
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contrast to the response patterns with 2Q,4 not all subsets are assumed to be
states of knowledge, and the set of all possible states of knowledge is given by K.
Thus, there are |K| possible knowledge states in the population of reference.

In its practical application in education, a knowledge structure is interpreted
as follows. Given a certain field of knowledge, say, Euclidean geometry, the set Q
represents a (finite) collection of problems or questions appropriate enough to give
a fine-grained and representative coverage of Euclidean geometry. Then, given
a population of reference, K represents the collection of all those and exactly
those states of knowledge that are actually (latently) inherent in units of the
population with respect to the items in Q. In other words, idealized, these and
only these knowledge states K ∈ K could be observed as the response patterns
if no response errors (i.e., careless error and lucky guess) would occur.

Knowledge spaces are special knowledge structures.

Definition 1.2. A knowledge structure (Q,K) is called a knowledge space iff5 K
is closed under arbitrary unions—i.e., for all F ⊂ K,

⋃F ∈ K. If a knowledge
space (Q,K) is (additionally) closed under arbitrary intersections—i.e., for all
F ⊂ K,

⋂F ∈ K—, then it is called a quasi ordinal knowledge space.

Definition 1.1 and 1.2 are ”persons-related”, i.e., they concern with subjects’
latent states of knowledge (K ∈ K). There is another formulation, the surmise
relation,6 which is ”items-related”, concerning with dependencies between the
individual items (I ∈ Q). Quasi ordinal knowledge spaces (persons-level) and
surmise relations (items-level) are linked by the Birkhoff-Theorem (Theorem 1.4).

In the sequel, these notions are provided.

Definition 1.3. Let Q be a non-empty set of items. A surmise relation on Q is
any quasi order on Q, i.e., any reflexive and transitive binary relation on Q.

In its practical application in education, a surmise relation (on Q) may model
latent hierarchies between the items (in Q) based on unobservable dependencies
of the type: A subject, (latently) capable of mastering test item J ∈ Q, is also
(latently) capable of mastering test item I ∈ Q. This is modeled by a surmise
relation ≤ on Q with I ≤ J , and any pair in ≤ is interpreted in this way.

Now, we come to the Birkhoff-Theorem (in its application in KST).

Theorem 1.4 (Birkhoff, 1937). Let Q be a non-empty set of items. There
is a one-to-one correspondence between the family of all quasi ordinal knowledge
spaces K on Q, and the family of all quasi orders ≤ on Q. This correspondence

4In general, any subset R ∈ 2Q may be ”generated” as a response pattern by the knowledge
states in K if response errors (i.e., careless error and lucky guess) are committed.

5The abbreviation “iff” stands for “if and only if”.
6The notion of a surmise relation is introduced in Definition 1.3.
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is defined through the equivalences (p, q ∈ Q, resp. K ⊂ Q)

p ≤ q :⇐⇒ ∀K ∈ K : [q ∈ K =⇒ p ∈ K],

K ∈ K :⇐⇒ ∀(p ≤ q) : [q ∈ K =⇒ p ∈ K].

Proof. See Doignon & Falmagne (1999), pp.7 39-40.

1.2 Probabilistic Knowledge Structures

Section 1.2 reviews basic probabilistic concepts of KST. This is done especially
emphasizing the process of modeling psychological assumptions by mathematical
methods. For this purpose, the scheme in Figure 1 is pursued.8

Figure 1
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1.2.1 Why Probabilities ?—Standard Example

As an example, we consider the knowledge structure

H :=
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, Q

}
7The abbreviation “pp.” stands for “pages”.
8It is a rough scheme and should be understood for intuitive illustration only.
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on the domain Q := {a, b, c, d, e} (briefly, the standard example).
This is a quasi ordinal knowledge space, i.e., it is closed under arbitrary unions

and intersections (cp.9 Definition 1.2). The surmise relation, ≤H, derived from
this space according to the Birkhoff-Theorem (Theorem 1.4) is even a partial
order, i.e., an antisymmetric quasi order. Its Hasse diagram is given in Figure 2.

Figure 2
Hasse Diagram of (Q,≤H)
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Let P be a population of reference.

Heuristics

We observe the following heuristics.

H1 A subject (randomly) sampled from P can have a response pattern R ⊂ Q
with R �∈ H.

H2 A subject sampled from P can solve an item J ∈ Q but fail to solve an
item I ∈ Q with I ≤H J .

H3 In series of trials, there are varying relative frequencies of response patterns.

Psychological Assumptions

The following psychological assumption is at the heart of probabilistic KST.

A1 Every subject of P is always in one of the latent states of knowledge H ∈ H.
These states occur with different proportions in P .

Assuming A1, however, is in contradiction with the heuristics in H1-H3. Thus,
under the assumption A1, we are forced to explain these defects. An explanation
is given by the (unobservable) psychological assumption A2.

9The abbreviation “cp.” stands for “compare”.
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A2 Response errors, i.e., careless errors (CEs) and lucky guesses (LGs), occur
while subjects respond to items. These effects are random, making all kinds
of response patterns possible a-priori.

According to the assumption A2 and the heuristics H3, it is plausible to make
the further two assumptions A3 and A4.

A3 Response patterns occur randomly with certain likelihoods.

A4 Even when conditioning on a knowledge state H ∈ H (i.e., given H ∈ H),
response patterns occur randomly with certain likelihoods.

Mathematization

The assumptions A1 and A4 are mathematized in M1 resp. M4.

M1 p : H −→ [0, 1], H �→ p(H) with

p(H) ≥ 0 (proportion of H in P ),∑
H∈H

p(H) = 1 (every Pk ∈ P in one H ∈ H).

M4 r : 2Q ×H −→ [0, 1], (R, H) �→ r(R, H) with

r(R, H) ≥ 0 (likelihood for R given H),∑
R∈2Q

r(R, H) = 1 for every H ∈ H (sure event).

The mathematization, M3, of A3 is a corollary of M1 and M4.

M3 Let ρ : 2Q −→ R, R �→ ρ(R) :=
∑

H∈H r(R, H)p(H). Then:10

ρ : 2Q −→ [0, 1],∑
R∈2Q

ρ(R) = 1.

Thus, ρ(R) ∈ [0, 1] measures the (unconditional) likelihood for R ∈ 2Q.

Before we proceed with mathematizing A2, let us consider an example.
Example
Let (Q,H) be the standard example. What is the probability of response pattern

R := {c, d}, i.e., ρ({c, d}), given the fact that subjects never respond correctly to
questions not in their knowledge states ?

10For a proof, see Corollary 1.7.
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(Hint: In this case, r({c, d}, H) = 0 for all H ∈ H with {c, d} �⊂ H .)
It holds:

ρ({c, d}) =
∑
H∈H

r({c, d}, H)p(H)

(i)
=

∑
H∈H,{c,d}⊂H

r({c, d}, H)p(H)

=
∑

H∈{{a,b,c,d},Q}
r({c, d}, H)p(H)

= r({c, d}, {a, b, c, d})p({a, b, c, d}) + r({c, d}, Q)p(Q).

Ad11 (i). For all H ∈ H with {c, d} �⊂ H , r({c, d}, H) = 0.
Let us return to the problem of mathematizing assumption A2. In order

to mathematize A2, we have to concretize the assumption A2 more clearly.
This is done by separating the vague assumption A2 into three more concrete
psychological assumptions A2.1, A2.2, and A2.3.

A2.1 Fixing the latent state of knowledge of a subject while she is responding
to the items, her responses to the items are independent.12

A2.2 The conditional likelihood for not solving an item contained in a subject’s
latent state of knowledge, i.e., committing a careless error, is the same for
all knowledge states containing the item, but it varies from item to item. In
other words, the likelihoods for a careless error are attached to the items,
and they do not vary with the knowledge states containing the items.

A2.3 The conditional likelihood for solving an item not contained in a subject’s
latent state of knowledge, i.e., committing a lucky guess, is the same for all
knowledge states not containing the item, but it varies from item to item.
In other words, the likelihoods for a lucky guess are attached to the items,
and they do not vary with the knowledge states not containing the items.

LI (i.e., A2.1) can be mathematized as follows.

M2.1 Let R ∈ 2Q and H ∈ H (standard example). Let x := (xa, xb, . . . , xe)
with xq ∈ {0, 1} (q ∈ Q) be the vector of item scores corresponding to R.
Further, let r(R, H) be the conditional probability for R given H (cp. M4),
and let rqxq|H denote the conditional probability for answering xq to item
q ∈ Q given H . Then, LI means that

r(R, H) =
∏
q∈Q

rqxq|H .

11The Latin word “ad” stands for “in regards to”.
12This is the assumption of local (or, conditional) independence, LI, central to latent class

and latent trait models. Note: The assumption of local independence requires the latent
“ability/ies” of a person to remain the same during testing ! It is a strong assumption !
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From LI, we obtain (for X, Y ⊂ Q, X \ Y := {q ∈ Q : q ∈ X, q �∈ Y })
r(R, H) =

∏
q∈Q

rqxq|H

=

⎡⎣ ∏
q∈H\R

rq0|H

⎤⎦ ·
[ ∏

q∈H∩R

rq1|H

]
·
⎡⎣ ∏

q∈R\H
rq1|H

⎤⎦ ·
⎡⎣ ∏

q∈Q\(R∪H)

rq0|H

⎤⎦ .

The assumptions A2.2 and A2.3 are mathematized as follows.

M2.2 β : Q −→ [0, 1[, q �→ β(q) =: βq with

βq ∈ [0, 1[ (careless error probability at q),

rq0|H = βq for all H ∈ H with q ∈ H.

M2.3 η : Q −→ [0, 1[, q �→ η(q) =: ηq with

ηq ∈ [0, 1[ (lucky guess probability at q),

rq1|H = ηq for all H ∈ H with q �∈ H.

Since rq0|H + rq1|H = 1 for all q ∈ Q and H ∈ H, it holds

rq1|H = 1 − βq for all H ∈ H with q ∈ H,

rq0|H = 1 − ηq for all H ∈ H with q �∈ H.

Taking all the previous considerations into account, we arrive at the following
expression for r(R, H) (as a consequence of A2.1-A2.3):

r(R, H)
2.1
=

∏
q∈Q

rqxq|H

=

⎡⎣ ∏
q∈H\R

rq0|H

⎤⎦ ·
[ ∏

q∈H∩R

rq1|H

]
·
⎡⎣ ∏

q∈R\H
rq1|H

⎤⎦ ·
⎡⎣ ∏

q∈Q\(R∪H)

rq0|H

⎤⎦
2.2/3
=

⎡⎣ ∏
q∈H\R

βq

⎤⎦ ·
[ ∏

q∈H∩R

(1 − βq)

]
·
⎡⎣ ∏

q∈R\H
ηq

⎤⎦ ·
⎡⎣ ∏

q∈Q\(R∪H)

(1 − ηq)

⎤⎦ .

Finally, the manifest distribution ρ(R) =
∑

H∈H r(R, H)p(H) fulfills (R ∈ 2Q)

ρ(R) =
∑
H∈H

⎧⎨⎩
⎡⎣ ∏

q∈H\R
βq

⎤⎦ ·
[ ∏

q∈H∩R

(1 − βq)

]

·
⎡⎣ ∏

q∈R\H
ηq

⎤⎦ ·
⎡⎣ ∏

q∈Q\(R∪H)

(1 − ηq)

⎤⎦⎫⎬⎭ p(H).


