
Chapter 1

Introduction

Wenn es eine Maschine mit [. . . ] gäbe, hätte das Folge-
rungen von der größten Tragweite. Es würde offenbar be-
deuten, daß man trotz der Unlösbarkeit des Entscheidungs-
problems die Denkarbeit der Mathematiker bei ja-oder-nein
Fragen vollständig (abgesehen von der Aufstellung der Axio-
me) durch eine Maschine ersetzen könnte.1

Kurt Gödel

Proof complexity is the area of research within complexity theory whose main
aim is to understand and classify the complexity of theorem-proving procedures.
Proof complexity is a theory which provides a very promising approach based
mainly on mathematical logic, on model theory, and on combinatorics to some of
the main questions and problems in complexity theory, as for instance the exact
relationship between the classes P and NP.

Since its origins in the late sixties, computational complexity considered as its
main computational paradigm the classical computational model of the Turing
machine, invented by Alan Turing in the thirties [Tur36]. In the last 25 years,
complexity theory moved forward to expand the concept of computational model.
New models of computation were introduced, also looking at and exploring other
scientific disciplines as physics or advanced mathematics, like probability theory.
The new computational models studied frequently involve alternative resources
such as randomization, quantum computation, or even a limited amount non-
computable information. The investigation of the main questions of complexity
theory from the point of view of these new computational paradigms and models
was very fertile and fruitful in the last twenty years. For instance, quantum
algorithms have been proved to be strictly more efficient than classical algorithms
on very important problems. The use of randomization, among many other

1Kurt Gödel in a letter to John von Neuman in 1956 (reprinted in [Göd93]).
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aspects, has provided us with the new theory of probabilistically checkable proofs
which represents one of the main attempts to tackle questions like P vs. NP.

Proof complexity is younger than complexity theory and so far its investiga-
tion has been essentially based only on the classical computational model of the
Turing machine. Only in the very last years some leading research groups have
initiated the study of proof complexity from the point of view of other models
of computation. This thesis focuses on developing and contributing to these re-
cent lines of research by considering two non-classical aspects from computational
complexity for theorem proving: proof systems with advice and parameterized
proof systems. In the following section we will give a brief overview of our main
results on these two models.

1.1 Motivation, Models, and Main Results

1.1.1 Proof Systems with Advice

Complexity classes with advice were introduced by Karp and Lipton [KL80].
The idea is here to enhance efficient computations with a limited amount of
non-uniform information: the advice. By using advice we leave the realm of
effective computability because the advice can be arbitrarily complex, even non-
computable. But we impose limits on the amount of advice that we are allowed
to use and in this way obtain interesting computational models such as Boolean
circuits [Pip79].

Recently, Cook and Kraj́ıček [CK07] introduced proof systems with advice
which—similarly as in the complexity approach mentioned above—may use a
limited amount of non-uniform information for the verification of proofs. Their
results show that, like in the classical Cook-Reckhow setting, these proof systems
enjoy a close connection to theories of bounded arithmetic. Moreover, Cook
and Kraj́ıček obtained the surprising result that with only one bit of advice, an
optimal proof system can be realized. The existence of such an optimal proof
system, i. e., the strongest possible system, is not known in the classical model.
Thus proof systems with advice appear to be a strictly more powerful model.

In this thesis we provide a rigorous development of the theory of proof systems
with advice and investigate the following fundamental questions for this new
model:

Q1: Given a language 𝐿, do there exist polynomially bounded
proof systems with advice for 𝐿?

Q2: For propositional proof systems, does advice help to shorten proofs?
Q3: Do there exist optimal proof systems with advice for 𝐿?

For question Q1, one of the major motivations for proof complexity [CR79],
we obtain a complete complexity-theoretic characterization. The classical Cook-
Reckhow Theorem states that NP = coNP if and only if the set of all tautologies
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TAUT has a polynomially bounded proof system, i.e., there exists a polyno-
mial 𝑝 such that every tautology 𝜑 has a proof of size ≤ 𝑝(∣𝜑∣) in the system.
Consequently, showing super-polynomial lower bounds to the proof size in propo-
sitional proof systems of increasing strength provides one way to attack the P vs.
NP problem. This approach, also known as the Cook-Reckhow program, has led
to a very fruitful research on the length of propositional proofs (cf. [Pud98]).

As in the Cook-Reckhow Theorem above, we obtain a series of results leading
to a complete characterization for Q1. In particular, we show a tight connection
of this problem to the notion of nondeterministic instance complexity. Simi-
larly as Kolmogorov complexity, instance complexity measures the complexity of
individual instances of a language [OKSW94]. In its nondeterministic version,
Arvind, Köbler, Mundhenk, and Torán [AKMT00] used this complexity mea-
sure to show that, under reasonable complexity-theoretic assumptions, there are
infinitely many tautologies that are hard to prove in every propositional proof
system. In the light of our investigation, this connection between nondetermin-
istic instance complexity and proof complexity is strengthened by results of the
following form: all elements of a given language 𝐿 have small instance complexity
if and only if 𝐿 has a proof system with advice such that every 𝑥 ∈ 𝐿 has a short
proof.

For question Q2 we concentrate on the most interesting case of propositional
proof systems. Unfortunately, proof systems with advice do not constitute a feasi-
ble model for the verification of proofs in practice, as the non-uniform advice can
be very complex (and even non-recursive). Approaching question Q2, we there-
fore investigate whether the advice can be simplified or even eliminated without
increasing the proof length. Our first result in this direction shows that proving
propositional tautologies does not require complicated or even non-recursive ad-
vice: every propositional proof system with up to logarithmic advice is simulated
by a propositional proof system computable in polynomial time with access to
a sparse NP-oracle. Thus in propositional proof complexity, computation with
advice can be replaced by a more realistic computational model.

While this result holds unconditionally, our next two results explore conse-
quences of a positive or negative answer to question Q2. Assume first that advice
helps to prove tautologies in the sense that proof systems with advice admit non-
trivial upper bounds on the lengths of proofs. Then we show that the same upper
bound can be achieved in a proof system with a simplified advice model. On the
other hand, if the answer is negative in the sense that advice does not help to
shorten proofs even for simple tautologies, then we obtain optimal propositional
proof systems without advice.

This brings us to our last question Q3. While the existence of optimal proof
systems in the classical model is a prominent open problem posed by Kraj́ıček
and Pudlák twenty years ago [KP89], question Q3 receives a surprising positive
answer: optimal proof systems exist when a small amount of advice is allowed.
For propositional proof systems this was already shown by Cook and Kraj́ıček
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[CK07]. Using the proof technique from [CK07], we show that for every language
𝐿, the class of all proof systems for 𝐿 using logarithmic advice contains an optimal
proof system and investigate whether the optimality result can be strengthened
to it’s efficient version of p-optimality. In addition, we show that the connection
between optimal proof systems and promise classes also holds in the presence of
advice.

Propositional proof systems enjoy a close connection to bounded arithmetic
(cf. the monographs [Kra95, CN10] or the survey [Bey09]). Cook and Kraj́ıček
[CK07] use the correspondence between proof systems with advice and arith-
metic theories to obtain a very strong Karp-Lipton collapse result in bounded
arithmetic: if SAT has polynomial-size Boolean circuits, then the polynomial
hierarchy collapses to the Boolean hierarchy. In Chapter 5 we show that this
collapse consequence is in fact optimal with respect to the theory PV , thereby
answering a question of Cook and Kraj́ıček [CK07].

1.1.2 Parameterized Proof Systems

Parameterized complexity is widely considered one of the modern paradigms of
computational complexity which considerably advances our understanding of in-
tractable problems by offering a refined view on running times of algorithms.
In proof complexity, this investigation has started recently with the work of
Dantchev, Martin, and Szeider [DMS07]. There the authors introduce a gen-
eral framework for parameterized proof complexity and consider a parameterized
version of Resolution which is the best studied and most important propositional
proof system in terms of applications.

In parameterized proof complexity, our main objective is to reach a more
refined understanding of theorem proving by adapting concepts and techniques
from parameterized complexity to proof complexity. Proof systems can be un-
derstood as non-deterministic algorithms for the tautology problem. Therefore,
by considering parameterized proof systems we reach a better understanding of
the borderline between efficiency and non-efficiency for non-deterministic algo-
rithms. In proof complexity this condensates in a more refined classification of
proof lengths. This view is supported by previous results from [DMS07, Gao09]
and our investigation in this dissertation. For example, the hard case in the clas-
sical dichotomy for tree-like Resolution of Riis [Rii01] splits in the parameterized
context into two cases: tautologies with fpt-bounded proofs and tautologies for
which the shortest parameterized proof has size similar to exhaustive search, as
shown in [DMS07].

In Chapter 7 we show that in contrast to classical Resolution, Parameter-
ized Resolution appears to be a relatively powerful proof system as a number
of classically hard principles admit fpt-bounded proofs even in tree-like Param-
eterized Resolution. We show this by transferring the concept of a kernel from
parameterized complexity to proof complexity and constructing kernelizations
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for many classically hard principles as the class of all CNF’s of bounded width.
Specific examples of formulas which are hard for classical Resolution, but pos-
sess fpt-bounded proofs even in tree-like Parameterized Resolution include the
linear ordering principle, pebbling tautologies, coloring principles, and Tseitin
tautologies.

For hardness results we introduce a powerful two-player game to model and
study the complexity of proofs in tree-like Parameterized Resolution. Our game
refines the Prover-Delayer game of Pudlák and Impagliazzo [PI00] and makes it
applicable in situations where the proof trees are very unbalanced. This technique
also yields improved lower bounds for non-parameterized proof systems as we
show in Chapter 6.

Although the Prover-Delayer game is a very general technique, it cannot be
used for dag-like proofs. In Section 7.8 we obtain the first lower bound for dag-
like Parameterized Resolution for the pigeonhole principle. For this lower bound
we again use a game-theoretic argument originating in Pudlák’s work [Pud00].

1.2 Organization of the Thesis and Published

Parts

This thesis is organized as follows. Chapters 2 and 3 contain background infor-
mation on proof complexity and computational complexity, respectively. These
two chapters are largely of preliminary nature. Apart from known definitions
and results, Sections 3.4 to 3.6 contain some new results on non-deterministic
instance complexity, promise classes, and optimal proof systems which we apply
in Chapter 4.

In Chapters 4 and 5 we investigate proof systems with advice, first from the
perspective of computational complexity (Chapter 4) and then with respect to
their relation to bounded arithmetic (Chapter 5).

In Chapter 6 we introduce a new technique for lower bounds in tree-like
proof systems—the asymmetric Prover-Delayer game—and apply it to classical
Resolution. Chapter 7 then contains our investigation of parameterized proof
complexity and in particular of Parameterized Resolution where we again use the
game of Chapter 6.

Chapter 8 concludes with a discussion of our two non-classical aspects that
we investigate here and puts this work into a broader context.

Part of the results from this thesis are already published in journals or in
conference proceedings. The relevant publications are

∙ [BKM11] containing Section 3.4 and most of Chapter 4;
∙ [BS11] containing Sections 3.5 and 3.6;
∙ [BM10b] containing Section 4.4.2 and all of Chapter 5;
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∙ [BGL10] containing Chapter 6;
∙ [BGL11] and [BGLR11] containing most of the material in Chapter 7.



Chapter 2

Proof Complexity

Nach diesen Bemerkungen sei es dem Verfasser noch erlaubt,
einige Worte für sich anzuführen. Er hat sich bemüht, so
kurz zu schreiben, als es ihm möglich war und es diese Gat-
tung von Arbeiten erfordert. Es wäre zu wünschen, daß man
sich dieses Gesetz der Kürze bei allen Büchern über das Al-
tertum, die doch nicht unser ganzes Leben beschäftigen sol-
len, vorhalten möchte. Die meisten antiquarischen Schrift-
steller gleichen durch ihre Weitschweifigkeit den Flüssen, die
anschwellen, wenn man ihres Wassers nicht bedarf, und tro-
cken bleiben, wo eben Wasser nötig wäre.1

Johann Joachim Winckelmann

One of the starting points of propositional proof complexity is the seminal
paper of Cook and Reckhow [CR79] where they formalized propositional proof
systems as polynomial-time computable functions which have as their range the
set of all propositional tautologies. In that paper, Cook and Reckhow also ob-
served a fundamental connection between lengths of proofs and the separation of
complexity classes: they showed that there exists a propositional proof system
which has polynomial-size proofs for all tautologies (a polynomially bounded proof
system) if and only if the class NP is closed under complementation. From this
observation the so called Cook-Reckhow program was derived which serves as one
of the major motivations for propositional proof complexity: to separate NP from
coNP (and hence P from NP) it suffices to show super-polynomial lower bounds
to the size of proofs in all propositional proof systems.

Although the first super-polynomial lower bound to the lengths of proofs had
already been shown by Tseitin in the late 60’s for a sub-system of Resolution
[Tse68], the first major achievement in this program was made by Haken in 1985

1Winckelmann in der Vorrede der Beschreibung der geschnittenen Steine des seligen Baron
Stosch (Florenz, 1760)
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when he showed an exponential lower bound to the proof size in Resolution for
a sequence of propositional formulas describing the pigeonhole principle [Hak85].
In the last two decades these lower bounds were extended to a number of fur-
ther propositional systems such as the Nullstellensatz system [BIK+96], Cutting
Planes [BPR97, Pud97], Polynomial Calculus [CEI96, Raz98], or bounded-depth
Frege systems [Ajt94, BIK+92, BPI93, KPW95]. For all these proof systems we
know exponential lower bounds to the lengths of proofs for concrete sequences of
tautologies arising mostly from natural propositional encodings of combinatorial
statements.

For proving these lower bounds, a number of generic approaches and general
techniques have been developed. Most notably, there is the method of feasible
interpolation developed by Kraj́ıček [Kra97], the size-width trade-off introduced
by Ben-Sasson and Wigderson [BSW01], and the use of pseudorandom generators
in proof complexity [ABSRW04, Kra01, Kra04a].

Despite this enormous success many questions still remain open. In particular
Frege systems currently form a strong barrier [BBP95], and all current lower
bound methods seem to be insufficient for these strong systems. A detailed survey
of recent advances in propositional proof complexity is contained in [Seg07].

Let us mention that the separation of complexity classes is not the only moti-
vation for studying lengths of proofs. In particular for strong systems like Frege
and its extensions there is a fruitful connection to bounded arithmetic which
adds insight to both subjects (cf. [Kra95]). Further, understanding weak systems
as Resolution is vital to applications as the design of efficient SAT solvers (see
e. g. [PS10] for a more elaborate argument). Last not least, propositional proof
complexity has over the years grown into a mature field and many researchers
believe that understanding propositional proofs and proving lower bounds—
arguably the hardest task in complexity—is a very important and beautiful field
of logic which is justified in its own right.

2.1 Proof Systems

We start with a general semantic definition of proof systems:

Definition 2.1.1 A proof system for a language 𝐿 is a (possibly partial) sur-
jective function 𝑓 : Σ∗ → 𝐿. For 𝐿 = TAUT, 𝑓 is called a propositional proof
system.

In the classical framework of Cook and Reckhow [CR79], proof systems are
additionally required to be computable in polynomial time. As we are relaxing
this definition in subsequent chapters we have chosen the more general seman-
tic definition above where the computational resources to compute 𝑓 are not
specified.



2.2. SIMULATIONS AND OPTIMAL PROOF SYSTEMS 9

We review important notions concerning proof systems. A string 𝑤 with
𝑓(𝑤) = 𝑥 is called an 𝑓 -proof of 𝑥. Proof complexity studies lengths of proofs,
so we use the following notion: for a function 𝑡 : ℕ→ ℕ, a proof system 𝑓 for 𝐿
is 𝑡-bounded if every 𝑥 ∈ 𝐿 has an 𝑓 -proof of size ≤ 𝑡(∣𝑥∣). If 𝑡 is a polynomial,
then 𝑓 is called polynomially bounded. We recall the classical theorem of Cook
and Reckhow on polynomially bounded proof systems:

Theorem 2.1.2 (Cook, Reckhow [CR79]) A language 𝐿 has a polynomially
bounded proof system if and only if 𝐿 ∈ NP.

2.2 Simulations and Optimal Proof Systems

Proof systems are compared according to their strength by simulations as intro-
duced in [CR79] and [KP89]. If 𝑓 and 𝑔 are proof systems for 𝐿, we say that 𝑔
simulates 𝑓 (denoted 𝑓 ≤ 𝑔), if there exists a polynomial 𝑝 such that for all 𝑥 ∈ 𝐿
and 𝑓 -proofs 𝑤 of 𝑥 there is a 𝑔-proof 𝑤′ of 𝑥 with ∣𝑤′∣ ≤ 𝑝 (∣𝑤∣). If such a proof
𝑤′ can even be computed from 𝑤 in polynomial time, we say that 𝑔 p-simulates
𝑓 and denote this by 𝑓 ≤𝑝 𝑔. If the systems 𝑓 and 𝑔 mutually (p-)simulate each
other they are called (p-)equivalent, denoted by 𝑓 ≡(𝑝) 𝑔. A proof system for 𝐿
is (p-)optimal if it (p-)simulates all proof systems for 𝐿.

Whether or not there exist optimal propositional proof system is open. Posed
by Kraj́ıček and Pudlák [KP89], this question has remained unresolved for more
than twenty years. Sufficient conditions were established by Kraj́ıček and Pudlák
[KP89] by NE = coNE for the existence of optimal and E = NE for p-optimal
propositional proof systems, and these conditions were subsequently weakened
by Köbler, Messner, and Torán [KMT03]. Necessary conditions for the existence
of optimal proof systems are tightly linked to the following question for promise
complexity classes lacking an easy syntactic machine model:

Problem 2.2.1 Do there exist complete problems for a given promise class C?

Like the first question of the existence of optimal proof systems also Problem 2.2.1
has a long research record, dating back to the 80’s when Kowalczyk [Kow84] and
Hartmanis and Hemachandra [HH88] considered this question for NP∩ coNP and
UP. This research agenda continues to recent days where, due to cryptographic
and proof-theoretic applications, disjoint NP-pairs have been intensively studied
(cf. [GSS05, GSSZ04, GSZ07, Bey07] and [GSZ06] for a survey). Very recently,
Itsykson has shown the surprising result that AvgBPP, the average-case version
of BPP, has a complete problem [Its09].

Understanding these questions better through characterizations is an impor-
tant problem with consequences to seemingly unrelated areas such as descriptive
complexity: very recently, Chen and Flum [CF10] have shown that the exis-
tence of an optimal propositional proof system is equivalent to the open problem
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whether 𝐿≤ is a P-bounded logic for P. Other recent research concentrated on
modified versions of Q1, where a number of surprising positive results have been
obtained. Cook and Kraj́ıček [CK07] have shown that optimal propositional
proof systems exist under non-uniform information (advice), and even one bit of
advice suffices (we will discuss this result in detail in Section 4.4). In another di-
rection, Hirsch and Itsykson [HI10, Hir10] considered randomized proof systems
and showed the existence of an optimal system in the class of all automatizable
heuristic proof systems (cf. Chapter 8). Still another positive result was very re-
cently obtained by Pitassi and Santhanam [PS10] who show that there exists an
optimal quantified propositional proof system under a weak notion of simulation.

2.3 Two Examples of Proof Systems

We give two important examples of propositional proof systems which we will
need later on: Resolution and Frege systems.

We start with Resolution. A literal is a positive or negated propositional
variable and a clause is a set of literals. The width of a clause is the number
of its literals. A clause is interpreted as the disjunctions of its literals and a
set of clauses as the conjunction of the clauses. Hence clause sets correspond to
formulas in CNF. The Resolution system is a refutation system for the set of all
unsatisfiable CNF. Resolution uses as its only rule the Resolution rule

{𝑥} ∪ 𝐶 {¬𝑥} ∪𝐷
𝐶 ∪𝐷

for clauses 𝐶,𝐷 and a variable 𝑥. The aim in Resolution is to demonstrate
unsatisfiability of a clause set by deriving the empty clause. If in a derivation
every derived clause is used at most once as a prerequisite of the Resolution
rule, then the derivation is called tree-like, otherwise it is dag-like. The size of
a Resolution proof is the number of its clauses where multiple instances of the
same clause are counted separately. Undoubtedly, Resolution is the most studied
and best-understood propositional proof system (cf. [Seg07]).

Our second example are Frege systems. Frege systems derive formulas using
axioms and rules. In texts on classical logic these systems are usually referred
to as Hilbert-style systems, but in propositional proof complexity it has become
customary to call them Frege systems [CR79].

A Frege rule is a (𝑘 + 1)-tuple (𝜑0, 𝜑1 . . . , 𝜑𝑘) of propositional formulas such
that

{𝜑1, 𝜑2, . . . , 𝜑𝑘} ∣= 𝜑0 .

The standard notation for rules is

𝜑1 𝜑2 . . . 𝜑𝑘
𝜑0

.


