
Chapter 1

Introduction

Amino acids are the building blocks for all life on earth. Albeit the almost infinite variety
of species the number of amino acids forming proteins is limited to about 20. The major-
ity of them are rather simple organic compounds with an amino group and an aliphatic,
aromatic, or heterocyclic side chain (R) attached α to the carboxylic group. With the
exception of the simplest amino acid glycine, all other amino acids are chiral compounds.
In nature the L-form prevails. However, D-alanine, for example, is found in the cell mem-
brane of bacteria.

Amino acids and their derivatives are of particular economical importance since they are
utilized on a large scale as nutrition factors and flavor enhancers (e. g. glutamate). Addi-
tionally, many pharmaceuticals such as antibiotics, heart, cancer, and anti-HIV drugs are
produced starting from amino acids. An excellent overview about production methods and
the application of several amino acids is given by Kleemann et al.1. Most production pro-
cesses are based on white biotechnology – in other words, on fermentation and enzymatic
technologies. The purification of the target product is achieved by crystallization from the
filtered fermentation broth often containing also electrolytes and other by-products. For
the design of separation units knowledge of thermodynamic data is indispensable. There-
fore, since the beginning of the past century phase behavior in amino acid solutions has
attracted the interest of many research groups especially with regard to its modeling. Ac-
tivity coefficients as well as solubilities in aqueous amino acid solutions also containing
electrolytes have been measured and described with models of varying complexity.

In addition to amino acids, peptides and proteins are economically highly valuable bio-
products. Precipitation by addition of salts, non-ionic polymers, polyelectrolytes, or or-
ganic solvents is commonly used to isolate target proteins from solutions. Often two meta-
stable liquid phases – one protein-rich and one protein-lean – form instead of the ther-
modynamically stable solid precipitate. The phase behavior is very complex and strongly
depending on solution conditions such as ionic strength, salt type and pH. Although still
far away from a rigorous quantitative modeling of the thermodynamics of complex protein
solutions, qualitative agreement between model and experiment can already be achieved.
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1.1 Aim of the Thesis
The scope of this thesis is twofold: Because solutions in biotechnology often contain salts,
a model that can deal with charged species is essential. The Perturbed-Chain Statistical
Association Theory (PC-SAFT) developed by Groß et al.2 is extended by an electrolyte
term in order to describe solution densities, vapor pressure depression, and mean ionic
activity coefficients of aqueous electrolyte solutions. In a second step, phase behavior of
binary water-amino acid (peptide) mixtures is calculated with the same model. Herewith,
the foundation is laid for modeling the influence of electrolyte type and concentration on
activity coefficient and solubility of amino acids and peptides in aqueous solutions.
Another aim is to model phase behavior in protein systems with an equation of state.
The applicability of a rigorous approach such as PC-SAFT is investigated. Further, a
model based on the McMillan-Mayer framework is applied to describe second osmotic virial
coefficients of hen egg-white lysozyme in aqueous salt solutions as well as the meta-stable
liquid-liquid demixing and the solubility.

1.2 Structure of the Thesis
After this introduction Chapter 2 provides the thermodynamic basics of phase equilibria
calculations. Besides some fundamentals, Chapter 3 contains a detailed description of how
equations of state, especially the PC-SAFT equation of state, are developed from statistical
mechanics and perturbation theory. The concept of the radial distribution function and
its relation to other thermodynamic functions is elucidated. Chapter 4 is dedicated to the
potential of mean force ansatz and its theoretical application to colloidal dispersions. The
extension of the PC-SAFT model to electrolyte systems follows in Chapter 5. Further, the
method of modeling amino acid (peptide) solutions with electrolyte PC-SAFT (ePC-SAFT)
is explained. Modeling results for electrolyte solutions, amino acid (peptide) solutions, and
electrolyte/amino acid solutions are presented in Chapter 6 whereas Chapter 7 summarises
the results for the protein systems. A summary of the thesis, conclusions, and an outlook
for future work follow in Chapter 8.
The Appendix mainly comprises component model parameters and supplementary result
figures.

1.3 Investigated Systems
The electrolyte PC-SAFT equation of state is used to model solution densities, vapor
pressures, (mean ionic) activity coefficients and solubilities of following aqueous electrolyte,
amino acid, and peptide solutions:

• salts containing

cations: Li+, Na+, K+, NH+
4 , Mg2+, Ca2+

anions : F−, Cl−, Br−, I−, OH−, NO−3 , SO
2−
4
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• glycine, DL-alanine, DL-serine, L-serine, L-proline, L-valine, L-arginine, L-lysine,
DL-threonine, L-threonine, L-histidine

• α-ABA, β-ABA, γ-ABA∗

• α-AVA, γ-AVA†

• diglycine, triglycine, dialanine, alanylglycine, glycylalanine

As far as experimental data was available solubilities of amino acids and peptides were
modeled.
The influence of amino acids on the mean ionic activity coefficient of salts was investigated
for 17 electrolyte/amino acid systems (see Appendix H, pp. 130).
As an example of a protein system hen egg-white lysozyme/NaCl solutions were chosen.

∗ABA: aminobutyric acid
†AVA: aminovaleric acid





Chapter 2

Thermodynamical Background

2.1 Basics

A mixture of chemical compounds can distribute to multiple phases (solid, liquid, gas).
There will be an interchange of components between the coexisting phases until equilibrium
is reached and all intensive properties do not change anymore. Intensive properties are
those that do not depend on the size, mass, or shape of the phase, such as temperature,
pressure, density, and composition. The equilibrium thermodynamics provides an abstract
mathematical framework which quantitatively relates the variables describing the state of
the system.
A system is completely characterized by the following function which contains the infor-
mation of the first and second law of thermodynamics:

U = U(S, V,n) (2.1)

Eq. 2.1 is called thermodynamic potential or fundamental function of the internal energy
with the entropy S and the volume V as the respective fundamental variables. The total
differential of this function is

dU =
(

∂U

∂S

)

V,n︸ ︷︷ ︸
T

dS +
(

∂U

∂V

)

S,n︸ ︷︷ ︸
−P

dV +
N∑

i=1

(
∂U

∂ni

)

S,V,nj 6=i︸ ︷︷ ︸
µi

dni (2.2)

Here, the dependence of the internal energy on the amount of each component i is given
by the partial differential quotient

(
∂U
∂ni

)
S,V,nj 6=i

and is called chemical potential µi.

Equilibrium is reached when the entropy is maximized or in other words the internal energy
is at its minimum, i. e.

dS = 0 , d2S < 0 (2.3)

dU = 0 , d2U > 0 (2.4)

For a system consisting of C components distributed in π phases this can be translated
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into the three well-known phase equilibrium conditions:

T (1) = T (2) = ... = T (π) = T (2.5)

P (1) = P (2) = ... = P (π) = P (2.6)

µ
(1)
i (T, P,n(1)) = µ

(2)
i (T, P,n(2)) = ... = µ

(π)
i (T, P,n(π)) ∀ i ∈ C (2.7)

Applying Legendre transformation three other fundamental equations can be derived from
Eq. 2.2:

dH = d(U + PV ) = TdS + V dP +
N∑

i=1

µidni (2.8)

dG = d(H − TS) = −SdT + V dP +
N∑

i=1

µidni (2.9)

dA = d(U − TS) = −SdT − PdV +
N∑

i=1

µidni (2.10)

The fundamental variables for the enthalpy H are S and P . The Gibbs (free) energy (or free
enthalpy) plays an important role in equilibrium thermodynamics since its fundamental
variables T and P are easily accessible experimentally in contrast to the entropy, for
example. Also the Helmholtz (free) energy A, with its fundamental variables T and V ,
is of major interest because many thermodynamic models (especially those derived from
statistical mechanics) are written in terms of the Helmholtz energy.
A comparison of the coefficients of the total differential equations (Eqs. 2.2, 2.9-2.10)
and their respective fundamental equations (not shown here) yields following differential
quotients:

(
∂U

∂S

)

V,ni

=
(

∂H

∂S

)

P,ni

= T (2.11)
(

∂U

∂V

)

S,ni

=
(

∂A

∂V

)

T,ni

= −P (2.12)
(

∂A

∂T

)

V,ni

=
(

∂G

∂T

)

P,ni

= −S (2.13)
(

∂H

∂P

)

S,ni

=
(

∂G

∂P

)

T,ni

= V (2.14)

and
(

∂U

∂ni

)

S,V,nj 6=i

=
(

∂H

∂ni

)

S,P,nj 6=i

=
(

∂G

∂ni

)

T,P,nj 6=i

=
(

∂A

∂ni

)

T,V,nj 6=i

= µi (2.15)

The equations shown above prove the fact that the knowledge of one thermodynamic
potential suffices to derive all other properties of a system. Hence, without loss of generality
we confine ourselves to dealing only with the Helmholtz energy A and its derivatives
throughout this work.
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2.2 Calculation of Phase Equilibria

2.2.1 Vapor-Liquid and Liquid-Liquid Equilibria

The equality of the chemical potential of each component in every phase (Eq. 2.7) can be
reformulated as the isofugacity criterium

f
(1)
i = f

(2)
i = ... = f

(π)
i ∀ i ∈ C (2.16)

Within the scope of this work the number of phases is restricted to two. There are three
concepts for the calculation of phase equilibria: ϕ−ϕ, γ−ϕ, and γ−γ. These are explained
below.

ϕ− ϕ Concept

Using the definition of the fugacity coefficient ϕi

ϕi ≡ fi

xiP
(2.17)

with xi being the mole fraction of component i one obtains

(xiϕi)(1) = (xiϕi)(2) ∀ i ∈ C (2.18)

The fugacity coefficients are complex functions of system temperature, volume or density,
and composition: ϕi = ϕi(T, v,x). Therefore, the compositions in each phase must be
calculated iteratively. As an example, the iteration algorithm for an isobaric-isothermal
flash VLE or LLE calculation is illustrated in Fig. 2.1. However, this concept is generally
applicable (also in the critical phase region where liquid and gas phase have similar prop-
erties) as long as there are equations of state providing the fugacity coefficients for each
phase.

γ − ϕ Concept

When calculating VLE the fugacity of the liquid phase can also be described by an ac-
tivity coefficient γi while the behavior of the vapor phase is still captured by the fugacity
coefficient:

fL
i = xL

i γiP
LV
0i ϕLV

0i Poy = xV
i ϕV

i P = fV
i (2.19)

PLV
0i and ϕLV

0i are the vapor pressure and the fugacity coefficient of pure component i,
respectively. The Poynting factor Poy captures the pressure dependence of the fugacity
coefficient and is negligible (≈ 1) for pressures below 10 bar. Further, the ratio ϕLV

0i /ϕV
i ≈ 1

at low pressures. Hence, Eq. 2.19 simplifies to

xL
i γiP

LV
0i = xV

i P (2.20)
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and at low concentration, i. e. in the limit of an ideal solution where γi ≈ 1, to the
well-known Raoult’s law

xL
i PLV

0i = xV
i P (2.21)

The activity coefficient is obtained from gE-models∗ or can as well be calculated with the
help of an equation of state by the following definition

γi ≡ ϕi

ϕ0i
(2.22)

One advantage of the γ − ϕ concept is that for isothermal calculations and when the
vapor pressure is given as a function of temperature (e. g. Antoine equation) the phase
compositions are numerically easy to obtain. That is not the case for isobaric calculations.
Phase equilibrium calculations at higher pressures with the γ − ϕ concept are seldom
performed because an equation of state is needed to evaluate the Poynting factor and the
fugacities for Eq. 2.19. Hence, in this case it makes more sense to directly use the ϕ − ϕ

concept. Another shortcoming of the γ−ϕ concept is that – based on different assumptions
and simplifications for the liquid and the gas phase – the critical phase region is not well
described.

γ − γ Concept

For the description of LLE both liquid phases can be described with activity coefficients.
This method is only applicable for pressure and density independent phase equilibria be-
cause gE models generally are only able to capture the temperature and concentration
dependence of the excess free energy. Nevertheless, due to the incompressibility of liquids,
many binary mixtures reveal a negligible influence of the pressure on the phase equilib-
rium. Density effects due to temperature changes are also often neglected assuming similar
thermal expansion coefficients for all components.

2.2.2 Solid-Liquid Equilibria

The fugacities of the solid (S) and the liquid (L) phase are formulated using activity
coefficients:

fS
i = xS

i γS
i fS

0i (2.23)

fL
i = xL

i γL
i fL

0i (2.24)

where fS
0i and fL

0i are the (pure component) standard fugacities of the solid and the liquid,
respectively. Rearranging Eqs. 2.23-2.24 one obtains the solubility of component i in the
liquid phase

xL
i =

xS
i γS

i fS
0i

γL
i fL

0i

(2.25)

∗Remember: gE = kBT
C∑
i

xi ln γi.
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Fig. 2.2: Thermodynamic cycle for the calculation of the ratio fS
0i/fL

0i.

Unfortunately, the standard fugacities are not readily available, especially when the system
temperature lies above the triple point of the crystallizing component and below the one
of the other component. In this case ‘pure solid’ and ‘pure liquid’ represent hypothetical
states. However, for the calculation of the solubility only the ratio fS

0i/fL
0i is of importance.

One harnesses a thermodynamic cycle as illustrated in Fig. 2.2.

The specific Gibbs enthalpy change for the transition from pure solid 1© to supercooled
liquid 2© at temperature T is given by

∆g = kBT ln
fL
0i

fS
0i

(2.26)

In analogy to Eq. 2.10 in a closed system (dn = 0)

∆g = ∆h− T∆s (2.27)

where the change in enthalpy and entropy can be expressed as the sum of the changes for
step A, step B, and step C:

∆h =

T Tr
0i∫

T

cS
p,i dT + ∆hTr

0i +

T∫

T Tr
0i

cL
p,i dT

= ∆hTr
0i +

T∫

T Tr
0i

∆cp,i dT (2.28)

∆s =

T Tr
0i∫

T

cS
p,i

T
dT +

∆hTr
0i

T Tr
0i

+

T∫

T Tr
0i

cL
p,i

T
dT

=
∆hTr

0i

T Tr
0i

+

T∫

T Tr
0i

∆cp,i

T
dT (2.29)


