
Chapter 1

Introduction

1.1 What means and to what end do we study

MONET?1

Warning: What we do not(!) do. The first association when reading Monet

probably is the famous French painter Claude Monet (1840–1926). His painting
“Impression soleil levant” from 1872—a morning scene from Le Havre harbor—
coined the term Impressionism that later on was used to describe a whole field
of art. But as this thesis is on Theoretical Computer Science (TCS), this first
impression on Monet is very misleading. We neither reveal any ancient TCS
results due to Claude Monet (as we do not even know whether he was interested
in efficient computation at all), nor do we study algorithmics and computational
complexity with an “impressionistic” view. Hence, a big apology to all who started
reading with the intention of discovering a not yet documented relation between
the fine arts and TCS: Claude Monet is not(!) the topic of this work.

So, what is MONET? In this thesis we consider the problem Monet—an ac-
ronym for Mo(notone) n(ormal form) e(quivalence) t(est)—that asks to decide
equivalence of a monotone DNF (disjunctive normal form) and a monotone CNF
(conjunctive normal form) (for formal definitions of any term we refer to Chap-
ter 2). Monet is equivalent to TransHyp—given two hypergraphs, decide
whether one is the transversal hypergraph of the other. TransHyp is a vari-
ant of the well-known problem VertexCover, in its hypergraph version also
known as HittingSet. But instead of just asking for one vertex set of minimum
cardinality that has a non-empty intersection with all edges, we are interested in
the set of all minimal sets that “cover” resp. “hit” all edges.

Practical relevance. Consequently, Monet is a covering problem and can be
interpreted as the enumeration of all (in some sense) minimal solutions of some
system. Similar questions for enumeration of minimal solutions are ubiquitous in
many problems from diverse applications. In fact, covering and enumeration prob-
lems that are Monet-equivalent or strongly related can be found in fields such as

1Title inspired by Friedrich Schiller’s inaugural lecture (1789) at this thesis’ author’s university.

1



Chapter 1 Introduction

artificial intelligence, computational biology, databases, data mining, distributed
systems, graph theory, logic, machine learning, mathematical programming, ma-
troid theory, and mobile communication systems (cf. Chapter 3 for more details).
The consequence is that any approach solving Monet can be easily transformed
to solve a wide range of problems in very different fields. Thus, on the one hand,
research on algorithms solving Monet and even any technique improving known
procedures is very important from the point of view of practical applications.

And in theory: Unsettled complexity. On the other hand, Monet research
is faced with some very interesting theoretical issues that we will describe in the
following. The equivalence test for arbitrary monotone formulas (not necessarily
in normal form) is coNP-complete [Rei03]. The same bound can be easily proven
for arbitrary Boolean formulas in normal form. The coNP-completeness in this
context means that these problems are “hard” since it is very unlikely that they are
solvable by “fast” algorithms in the sense of deterministic polynomial running time
(running time is usually measured with respect to the input size and polynomial
running time is the usual notion of efficient solutions in complexity theory).

But note that in the Monet setting we require the input formulas to be mono-
tone and in normal form, which together represent stronger “structural” restric-
tions and thus may ease the solution process. Whether these restrictions really can
be exploited to develop polynomial Monet algorithms is an exciting open question
for more than 25 years now [DT87, EG95, Joh91, LLK80, Lov92, Man02, Pap97].
The best currently known Monet algorithm has quasi-polynomial running time
no(log n) [FK96], which still, after all, can be seen as an indication that Monet is
probably not coNP-complete. Otherwise, all coNP-complete problems would be
solvable in quasi-polynomial time—a result that hardly any expert expects. But
as it is quasi-polynomial this algorithm is not “fast” as well.

Another indication that Monet probably is not coNP-complete is a recent result
that shows Monet to be solvable using only O(log2 n) guessed bits [EGM03,
KS03a, KS03b]. Again, no expert expects any coNP-complete problem to be
solvable with O(log2 n) guessed bits as usually a polynomial number is assumed
to be required.

MONET and the P-vs.-NP question. The currently unsolved complexity of
Monet places it in the group of a handful—and thus really rare—problems that
yet cannot be classified as “easy” (polynomial time solvable) or “hard” (NP- or
coNP-complete). Hence, Monet, along with the prominent Graph Isomor-

phism problem—given two graphs, decide if they are isomorphic—, may play some
role in research on the popular P-vs.-NP question (one of the seven major problems
in mathematics whose solution is worth a reward of 1, 000, 000 $ denoted by the
Clay Mathematics Institute). The question is whether the class of deterministic
polynomial time solvable problems (the class P) and the class of nondeterminis-
tic polynomial time solvable problems (the classes NP, resp. coNP) coincide. If

2



1.1 What means and to what end do we study Monet?

Monet is not solvable in polynomial time (formally written as Monet �∈ P),
then this immediately implies a separation of P and NP. But as the P-vs.-NP

question is open since the field of complexity theory emerged, we expect showing
Monet �∈ P a really tough problem. On the other hand, there are no known
complexity theoretic consequences that would follow from Monet ∈ P, although
this question is also open for many years now and, hence, seems to be tough as
well. But note that also Primes—given an integer, decide whether it is prime—
had an analogue unsettled complexity status for a long time until it was actually
shown to be solvable in polynomial time only a few years ago [AKS04]. Thus,
there is still a possibility of a breakthrough showing Monet ∈ P. (Unfortunately,
this breaktrough is not contained in this thesis.) Nevertheless, we expect new
techniques to be necessary as we conjecture that none of the known Monet al-
gorithms (for which not always upper and lower bounds on the running time are
known) is polynomial.

Hence, the problems between “easy” or “hard” (resp., “fast” / no “fast” so-
lution) constitute two very exciting challenges to algorithmicists and complex-
ity theorists as well. One is to actually find a fast algorithm and the other is
to find some kind of complexity theoretic arguments for or against a fast solu-
tion. As for Primes these challenges finally led to a fast solution [AKS04]. In
the case of Graph Isomorphism we have a complexity theoretic classification
that would yield a solution to an unsolved question very strongly related to the
P-vs.-NP question [KST93] in case that Graph Isomorphism is not(!) poly-
nomial. More precisely, Graph Isomorphism cannot be NP-hard unless the
so-called polynomial hierarchy collapses to its second level—an event that is sup-
posed to be rather unlikely. As for Monet the situation is comparable to that
of Graph Isomorphism. There are several indications that Monet is more
likely to be polynomial than to be hard—like the quasi-polynomial algorithms
by Fredman and Khachiyan [FK96] and the solvability with bounded nondeter-
minism [EGM03, KS03a, KS03b]. Furthermore, the consequences of being not
polynomial even seem to be a little stronger for Monet than for Graph Iso-

morphism.

However, all that is known for the fast solvability yet is that Monet is poly-
nomial if and only if its computational variant Monet

′—given an irredundant,
monotone DNF, compute the equivalent irredundant, monotone CNF—is output-
polynomial [BI95a]. Here, output-polynomiality is an appropriate notion of fast
solvability for computation problems [JPY88]. Note in this context, that a slight
generalization of Monet

′ is very unlikely to have an output-polynomial solution.
Namely, finding an algorithm that, given a monotone formula (not necessarily
in DNF), computes the irredundant, monotone CNF in output-polynomial time
is the same as showing P = NP and thus as hard as solving the P-vs.-NP ques-
tion [GHM05].

3



Chapter 1 Introduction

Easy classes as a way out?! As there is no known fast algorithm for Monet

yet, one branch of research focuses on identifying restrictions of the inputs that
sufficiently simplify the problem to allow for polynomial time solutions. Such
restrictions then yield “easy” classes of the problem. One example might be to
examine instances where the DNF only contains monomials of constantly bounded
size. And in fact, Monet with constantly size bounded monomials has polynomial
time algorithms [BEGK00, EG95]. Many other easy classes are known (cf. Chap-
ter 4 for more details). Due to the successes in searching for more and more easy
classes, many practically interesting input instances can be solved in polynomial
time although there is no known polynomial algorithm for Monet itself. This is
maybe the major reason that makes worthwhile every effort invested in research
on easy classes of Monet. But there are two other, possibly not less important
reasons. One is that the knowledge of easy classes reveals new information about
the really hard problems apparent when trying to attack polynomial solvability of
the general problem Monet itself. And the other is that the easy classes might
prove useful when looking for lower bound or hardness results for Monet.

Known MONET algorithms. There are many known algorithms solving Monet

or Monet
′ (cf. Chapter 5 for more details). They are inspired by very diverse

techniques from different fields—which is not that surprising having in mind the
broad range of equivalent problems. We do not really have to distinguish between
algorithms for Monet or Monet

′ as they can be easily transformed to solve the
respective other problem version.

One of the earliest approaches was the Berge-multiplication algorithm (cf.,
e. g., [Ber89]). So far, it is the only algorithm having a known lower bound (that
states what resources (e. g., running time) are minimally needed using the al-
gorithm to solve arbitrary Monet instances). Takata’s lower bound shows that
Berge-multiplication is not fast [Tak07]. But as Berge-multiplication can be easily
implemented, there have been several improvements of it [BMR03, DL05, KS05,
Uno02, US03]. Analyses of the running times of the improved versions have been
pending.

Other algorithms do not follow a term based approach as Berge-multiplication
does but use a variable based decomposition technique [BMR03, EGM03, Eit91,
MR94, Rym92, Rym94a]. Maybe the most famous variable based algorithms are
the FK-algorithms A and B by Fredman and Khachiyan [FK96]. Algorithm B is
the Monet algorithm with the currently best upper bound on the running time
of no(log n). This upper bound is a guarantee on the amount of running time that
will never be exceeded on any instance by FK-algorithm B.

Inspired by model-based diagnosis techniques are Reiter’s algorithm [Rei87]
(and its improvements [GSW89, Wot01]) and several other recently published
algorithms, e. g., [LJ03, TT02]. There are Monet algorithms based on techniques
that were useful in data mining settings [GKM+03, HBC07], as well as genetic
algorithms [LJ02, Vin99a, VØ00b] or parallel approaches [Elb08, KBEG07a].

4



1.1 What means and to what end do we study Monet?

Although there are many very diverse algorithms, all approaches have in com-
mon that there are only very few proven non-trivial upper or lower bounds on their
running times. Hence, theoretical knowledge of the algorithms’ behavior is not
really well developed. Having in mind the wide applicability of Monet results,
this situation is not satisfying at all.

Algorithm Engineering. One possibility—besides thorough theoretical analy-
ses—to get some impression of (practical) performance of an algorithm is to imple-
ment it and run it on a lot of well-chosen inputs. This is one branch of the emerging
field of Algorithm Engineering (cf. Chapter 6 for more details). Though, not that
many experimental studies on Monet algorithms have been published and all
have some lack of coverage [BMR03, DL05, KBEG06, KS05, LJ03, TT02, US03].
Some of the studies only show the potential of a single approach and do not really
compare it to others. In addition, none of them includes the theoretically best
algorithm, FK-algorithm B [FK96]. Hence, it is not clear at all, which of the
currently known algorithms is the best choice on which kind of instances.

This thesis’ contributions. In this thesis, we try to shed some light on the open
questions discussed in the previous paragraphs.

As for the easy classes, there are two main questions. First, how easy are the
easy classes? Can we do better than polynomial running time? The second one is
to find new easy classes. In this thesis we work on both questions. We analyze the
known easy classes with the intention of tightening the known resource bounds.
Thereby, we show some of the easy classes to be solvable with logarithmic space,
which improves the known polynomial time bounds. And we discover some new
easy classes.

As for the known Monet algorithms, our conjecture is that none of the cur-
rently known approaches is fast in the sense of polynomial (resp., output-polyno-
mial) running time. We start working on proving our conjecture, by giving non-
trivial lower bounds on the running times of several algorithms. From the point
of view of practical applications there is also another interesting open question,
namely that for the performance of the theoretically fastest Monet algorithm,
FK-algorithm B, in algorithmic experiments. Using the Algorithm Engineering
methodology we compare FK-algorithm B to FK-algorithm A and show it to be
competitive on our testbed. This result somehow adjusts the folklore assump-
tion that FK-algorithm B should be practically much slower than its theoretically
worse relative, FK-algorithm A.

As for computational complexity issues, we examine the fixed-parameter trac-
tability of Monet, a subject that has not been addressed in the literature so
far. Informally, a problem is said to be fixed-parameter tractable if there is an
algorithm whose running time is arbitrary (exponential or even worse) in a given
parameter but only includes polynomial terms for the input size (cf. Chapter 7 for
more details). The idea then is that for small values of the parameter the running

5



Chapter 1 Introduction

time of the algorithm behaves like being polynomial. We show Monet to be
in the class FPT of fixed-parameter tractable problems with respect to several
parameters.

1.2 Legend to this thesis

This thesis is organized as follows. In Chapter 2, we introduce basic notations
and concepts as well as the problem Monet. Chapter 3 then gives some further
motivation for studying Monet in the sense that we collect problems equivalent
or strongly related to Monet from very different fields. Afterwards, in Chapter 4,
we introduce easy classes of Monet that are restrictions of the input formulas
that allow for polynomial time solutions. In contrast, Chapter 5 contains algo-
rithms solving the general problem Monet without any restrictions on the input.
Some experimental results for important Monet algorithms follow in Chapter 6.
In Chapter 7, we then turn to the emerging field of parameterized complexity
and analyze Monet in that setting. Finally, some concluding remarks follow in
Chapter 8.

Parts of this thesis have already appeared or are accepted for publication in
refereed journals, in refereed conference and workshop proceedings, as technical
reports, or as manuscripts. In particular, Chapter 4 contains results from [GHM05,
GHM08], and [Hag06]; Chapter 5 contains results from [Hag07a] and [EHR08a];
Chapter 6 contains results from [HHM09], whereas the choice of test instances
is based on observations contained in [BHHM07]; and Chapter 7 contains results
from [Hag07b] and [EHR08b].

6


