
1 Introduction

Ultrashort laser pulses with durations in the fs-range become more and more important

in many branches of science. The unique properties of fs-pulses such as broad optical

spectra, high peak powers and a high phase coherence facilitate various apllications.

They are not only used in many branches of physics but also in other disciplines like

medicine, chemistry and biology.

All fs-laser systems are based on mode-locked oscillators where the ultrashort pulses

are generated. The dominant approach to generate fs-pulses in a laser oscillator is

the usage of Ti:sapphire crystall allowing a broadband amplification. This material is

capable to produce the shortest pulses from an oscillators with pulse energies in the

μJ-range. On the other hand, this concept has several drawbacks which hinder the

spread of applications especially to the commercial sector. The necessity of gas lasers or

frequency-doubled solid-state lasers for optical pumping results in low overall efficiencies

and high costs. The setups of Ti:sapphire based oscillators are quite complicated, require

periodic reallignment and are therefore often unreliable for applications outside research

laboratories.

Rare earth-doped fibers are a promissing alternative to bulk gain materials. Due

to the amorphous structure of the fused silica host, the laser levels are significantly

broadened, making rare earth-doped fibers ideal for the generation and amplification

of ultrashort pulses. The waveguide nature of optical fibers results in a well-controlled

spatial mode quality which is insensitive to external perturbations. The large surface to

volume ratio reduces thermal effects and the availability of fiber based components from

the telecommunication industry allows for compact and low-cost setups. The usage of

laser diodes for optical pumping further reduces the costs for fiber based oscillators.

Passively mode-locked oscillators based on optical fibers have been studied for about

three decades and are nowadays commercially available. The pulse formation is based

on an interplay between nonlinear phase contributions and the impact of anomalous

dispersion which allows a solitonic balance between these two effects. Mainly operating

11



around 1μm and 1.5μm, passively mode-locked fiber lasers routinely generated pulses

below 200-fs with pulse energies of a few nJ. The low pulse energy constitutes the

major drawback of fiber oscillators compared to their solid-state counterparts. Most

applications require higher pulse energy and thus additional amplifiers increasing costs

and the complexity of the system.

In general, there are two mechanisms limiting energy scaling of mode-locked (fiber)

oscillators. The first is an insufficient suppression of cw-operation at high power. Once

net gain is provided, a cw-background starts to grow and destabilizes mode-locked ope-

ration. This problem arises from saturable absorber mechanisms, whose transmittance

or reflectivity does not increase monotonically with increasing power and energy, respec-

tively. The second limitation is the stability of the generated pulse itself. Nonlinear

phase contributions can only be tolerated up to a certain level, constituting the main

drawback of previous approaches in (fiber) oscillators. This can be regarded as the more

general physical limitation as it is independent of the cavity design and the saturable

absorber mechanism.

The tight confinement of the electric field in an optical fiber leads to much higher

nonlinear phase contributions than in bulk gain media. Although the Kerr-nonlinearity

of fused silica is comparably small, the long interaction length and the tight confinement

of the electric field in the core result in much stronger nonlinear effects. The limitations

by excessive nonlinearities are therefore more stringent in fiber based oscillators consti-

tuting precursors for the development of new operation regimes. Research on high-energy

pulse formation in mode-locked fiber oscillators is thus necessary to be competitive to

solid-state oscillators.

Pulses tolerating for higher nonlinear phase contributions can be formed in the pre-

sence of normal dispersion which has been demonstrated in several propagation experi-

ments. The generation of similaritons representing an analytical class of ultrashort pulses

led to a new generation of ultrafast fiber amplifiers. For the generation in a system with

feedback, the pulse shaping process needs to be consistent with the boundary conditions

of cavities. Due to the fact that the pulse evolution at normal dispersion is monotonic,

the boundary conditions cannot be fulfilled offhand. The stability of the dynamics in

such nonlinear dissipative systems therefore requires additional mechansims. Beside the

study of stable pulse formation at normal dispersion and its targeted influence, the

demonstration of fiber oscillators with improved performance are the main subjects of

this thesis.

2 2



Organization of the thesis

The thesis is organized as follows. Chapter 2 provides a brief introduction to short-

pulse propagation in normal dispersive fibers. After the description of the governing

wave-equations and the general solution of optical solitons, the phenomenon of optical

wave breaking is subject of Sec. 2.2. This optical shock constitutes the main instability

mechanism for ultrashort pulses propagating at normal dispersion. Sec. 2.3 deals with

similaritons and parabolic pulses, respectively, which were shown to resist optical wave

breaking. The attempt to generate this class of analytic solutions in laser oscillators

constitutes the main motivation for the operation in the normal dispersion regime.

Chapter 3 describes some fundamentals of passively mode-locked fiber oscillators.

After introducing the basic mode-locking techniques suited for fiber lasers, a general

overview on the operation regimes of fiber oscillators and its limitations is given in

Sec. 3.2. The theoretical approach of master equations for the description of mode-locked

lasers is given in Sec. 3.3 with a focus on the normal dispersion regime (NDR).

Chapter 4 presents a passively mode-locked ytterbium3+-doped fiber oscillator opera-

ting in the normal dispersion regime. After introducing the experimental setup and the

numerical model in Sec. 4.1 and 4.2, the output characteristics are presented in Sec. 4.3.

The subject of the last section in this chapter is the impact of dispersion on the output

characteristics. Pulse shaping in the fiber section is basically an interplay between the

dispersion and the dominating Kerr-nonlinearity. For high power operation, the non-

linear phase contributions are usually maximized, so the parameters of the dispersion

slope remain free and can be adapted for stable steady-states. Beside the consequences

of the group-delay dispersion, the impact of third-order dispersion is evaluated. A self-

acting compensation of the third-order dispersion in an oscillator could be demonstrated

for the first time.

Chapter 5 containes detailed analysis of the operation regime and attempts to classify

the experimental results. The pulse dynamics inside the resonator are analyzed on the

basis of numerical results and the main mechanisms for pulse generation are deduced in

Sec. 5.1. It will be shown that the dynamic is an interplay between the evolution in the

fiber section and dissipative effects in the time and frequency domain. Sec. 5.2 discusses

the importance of those for the formation of a stable steady-state and the possibilities of

influencing the dynamic with additional filtering. (Experiments concerning filtering in

the time domain via an additional mode-locking mechanism is subject of chapter 6.) For
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classifying the operation regime, the experimental results are compared with theoretical

predictions in Sec. 5.3. Beside the analytical solutions of similaritons found for propa-

gation in normal dispersive fiber sections, the solution of the master equation approach

for the normal dispersion regime is also utilized. The classification of the results and

the parallels to other resonator designs are cariied out on this basis. The last section of

this chapter discusses the necessity of decoupling amplification from pulse shaping. This

design guide line was introduced in the first publications on fiber oscillators operating in

the normal dispersion regime and limits the range of use to core-pumped ytterbium3+-

doped fiber oscillators. It will be shown that a steady-state based on pulse shaping in

gain fibers is possible and opens the way to advanced fiber designs and the transfer to

other wavelengths.

The subject of chapter 6 is a hybrid mode-locking scheme for fiber oscillators based

on two passive saturable absorber mechanisms constituting nonlinear temporal filters.

After introducing the experimental setup in Sec. 6.1, the results are presented in Sec. 6.2

and Sec. 6.3. Beside a drastic enhancement of the self-starting capability, this mode-

locking scheme offers the possibility to tune the spectral output characteristic. This

mode-locking scheme was also utilized for an oscillator with a photonic bandgap fiber

for dispersion control which is presented in Sec. 6.4. Due to the birefingence properties

of this fiber, the formation of undesired modes of operation became dominant. Its

supression and the formation of stable pulses is also discussed in this section.

Chapter 7 presents experimental results of an erbium3+-doped fiber oscillator operating

in the normal dispersion regime constituting a first attempt to transfer this operation

regime to other wavelengths. After an introduction to some special properties of the

gain medium, the experimental setup is described in Sec. 7.2. The output characteristics

of this oscillator are presented in Sec. 7.3, followed by a discussion of the impact of

intrapulse Raman-scattering on the pulse formation. This nonlinear process was found

to be significant during pulse formation. Accounting for its influence and the differences

to ytterbium3+-doped fibers, the operation regime is discussed in Sec. 7.5. The subject of

the last section in this chapter is the limitation of the pulse energy imposed by the mode-

locking mechanism. Although only observed in this setup, the discussion contains general

aspects concerning further energy scaling of passively mode-locked (fiber) oscillators.

The thesis closes with a conclusion in chapter 8 and an outlook on possible future

studies in chapter 9.
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2 Pulse propagation in normal dispersive fibers

This chapter deals with some theoretical fundamentals for the description of fs-pulses

in optical fibers. The first section provides a brief introduction into soliton solutions

with a focus on the NDR. In the following, the main limitation for pulse propagation

in the NDR called optical wave breaking is described. The analysis of the criterion for

optical wave-breaking led to a new class of ultrashort pulses called similaritons which

are described in Sec. 2.3. This chapter mainly contains a qualitative description of pulse

propagation focusing on its importance for mode-locked oscillators.

2.1 Wave-equations and solitons

Nonlinear Schrödinger equation

The propagation of an ultrashort pulse in a nonlinear medium is covered by the nonlinear

Schrödinger equation (NLSE). This nonlinear partial differential equation describes the

changes of the slowly variing envelope A(z,t) in a reference frame moving with the pulse

at the group velocity vg. The so-called retarded frame T is related to the real time t by

T = t − z/vg. The slowly variing envelope approximation (SVEA) necessary to obtain

the NLSE assumes that the spectral width of the pulse is significantly smaller than the

central frequency. For an ultrashort pulse with a central wavelength in the infrared,

the SVEA is valid for pulse duration as short as 100 fs. Additional simplifying assump-

tions are included in the NLSE: first, the nonlinear contributions to the polarization are

treated as a small perturbation to the linear ones which is valid as the refractive index

changes are typically in the order of 10−6. Second, the polarization state of the elec-

tric field is assumed to remain unchanged during propagation. Owing to the fact that

the NLSE is a conservative equation, only propagation in lossless and non-amplifying

media can be covered. A detailed description of the derivation of the NLSE starting

from Maxwell’s equations, the approximations used and their validities can be found in
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Agrawals textbook on nonlinear fiber optics [1].

In its simplest form the NLSE accounts for the effects of group-velocity dispersion

(GVD) and Kerr-nonlinearity:

∂A

∂z
+ i

β2

2

∂2A

∂T 2
= iγ |A|2 A. (2.1)

For obtaining Eq. 2.1, the pulse amplitude A is assumed to be normalized, so that

|A|2 represents the optical power. Here, γ is a nonlinear parameter addressing Kerr-

nonlinearities, namely its dominant contribution, the self-phase modulation (SPM)1.

SPM is the temporal analog of self-focussing and leads to an intensity dependent refrac-

tive index according to

n (ω, I) = n0 (ω) + n2 |A|2 . (2.2)

The nonlinear parameter γ is related to the nonlinear refractive index n2 by

γ =
n2ω0

cAeff
, (2.3)

where c is the speed of light, ω0 the central frequency of the pulse and Aeff the effective

core area. The parameter β2 accounts for the GVD which is the lowest order of the

Taylor series describing the frequency dependence of the refraction index around the

carrier frequency ω0:

β (ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)

2 β2 +
1

6
(ω − ω0)

3 β3 + ..., (2.4)

where

βm =

(
dmβ

dωm

)
ω=ω0

. (2.5)

1 Since SiO2 is a symmetric molecule, contributions from the second-order susceptibility vanish in fused
silica fibers, and third-order processes constitute the lowest-order nonlinearities.
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In Eq. 2.4 the constant phase shift can be ignored and the second term corresponding to

vg is already included by the retarded time T. Beside the GVD, the third-order dispersion

(TOD) might be of importance, too, depending on the situation under consideration [1].

Fundamental solitons

The NLSE can be integrated by the inverse scattering methode leading to the well-

known bright temporal solitons for propagation in the anomalous dispersion regime.

Often expressed by dimensionless variables, the soliton solution has a hyperbolic secans

shape:

A (z, T ) =
√

P0 · sech
(

T

T0

)
exp (ikz) , (2.6)

where k is the wave number given by k = |β2|
γT0

. For β2 < 0, the quadratic phase con-

tributions induced by GVD can be compensated by SPM as these two contributions are

reciprocal. The pulse will adjust itself to fulfill this balance, thus solitons are inherently

stable. This balance is reflected by the soliton area theorem given by

N2 =
γP0T

2
0

|β2| , (2.7)

which relates the peak power P0 to the pulse duration T0 at a given GVD whereas N

is the soliton number. The soliton number N assigns the relative importance of GVD

and SPM effects. In this sense, N can also be used to describe non-solitonic pulses. For

N << 1, GVD dominates whereas for For N >> 1, SPM dominates the pulse evolution.

The relative importance can be treated by characteristic length scales over which the

dispersive and nonlinear effects become important for the pulse evolution [1]. Eq. 2.7

becomes:

N2 =
LD

LNL
, (2.8)

where LD is the dispersion length and LNL is the nonlinear length. Both characteristic

lengths depend on the parameters of the fiber and the pulse:
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LD =
T 2

0

|β2| , (2.9)

LNL =
1

γP0

. (2.10)

For the discussion here, only the fundamental soliton with N = 1, where both effects

are similar in strength, is of importance2. Fundamental solitons propagate unchanged

concerning envelope and phase and are chirp-free. The term soliton refers to the particle-

like nature of these solutions.

The concept of solitons is widely used in optical systems especially in fiber optic

communication as these pulses have some unique properties. Even when the initial

conditions for a fundamental soliton is not fulfilled, a pulse will asymptotically evolve

into a soliton. Energy can be exchanged with a non-solitonic background which allows

to form a fundamental soliton for 0.5 < N < 1.5. As a consequence, dissipative effects

and perturbations can be ignored up to a certain level. A soliton can readjust itself to

fulfill Eq. 2.7.

Dispersion-managed solitons

The energy coupling is determined by the phase velocities of the soliton and the non-

solitonic background and hence by the GVD of the fiber. It can be suppressed by varying

the GVD along the fiber section which avoids phase matching between the two compo-

nents. For linear propagation, the full compensation of dispersion corresponds to a time

reversal, so all GVD induced phase contributions vanish. The nonlinear contributions

remain and are balanced by the residual group-delay dispersion (GDD) defined as the

integral of the GVD over one periode of the dispersion map L:

β2L =

∫ L

0

β2(z)dz. (2.11)

Representing the GVD by β2(z), a dispersion map can be introduced to Eq. 2.1. Even if

this equation is not integrable via the inverse scattering method, pulse-like and periodic

2 High-order solitons, whose evolution is dominated by SPM are highly sensitive to perturbations
(high-order dispersion and nonlinear as well as dissipative effects) and are difficult to stabilize in a
resonator [2]. Properties of high-order solitons can be found in Ref. [1]
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solutions have been found. They represent breathing pulses, oscillating concerning am-

plitude and width. Even their chirp varies along the dispersion map constituting the

period. Although the shape is closer to a Gaussian, they can be regarded as “strobos-

copic” solitons. The balancing between GVD and SPM is no longer local but averaged

over one dispersion periode.

Solitons exist only at a certain power level which is given by Eq. 2.7. Above that

level, higher-order solitons, very sensitive to perturbations (especially high-order disper-

sion contributions), are excited and pulse break-up caused by soliton fission (split-up of

higher-order solitons into multiple fundamental solitons) can occur [3].

Beside the formation of high-order solitons, modulation instability (MI) is another

generic feature at anomalous dipersion which affects the stability of optical pulses espe-

cially at high power. MI refers to the exponential growth of a weak perturbation (ampli-

tude or phase modulation) caused by the interplay of GVD and SPM. Cw-radiation

breaks up into a train of pulses as gain is provided at sideband frequencies of ∼ 0.2 THz

[1]. MI occurs because its underlying four-wave mixing process is phase matched in

the presence of anomalous dispersion causing an energy transfer to the MI-sideband

frequencies.

MI constitutes the starting mechanism for soliton generation but also causes high-

frequency ripples on the spectrum of a propagating pulse [4]. If noise, such as amplified

spontaneous emission, copropagates, the pulse evolves randomly and is destabilized.

The destabilizing effects of soliton fission and MI are equivalent concerning the initial

evolution of a pulse in the anomalous dispersion regime [5]. Both effects can be utilized

for supercontinuum generation which relies on the break-up of a pump pulse and its

subsequent spectral broadening. Their relative impact depends on the experimental

situation and has been addressed in detail in Ref. [6]. These effects constitute the major

instabilities for ultrashort pulses propagating at anomalous dispersion.

In contrast, at normal dispersion, phase matching of mixing procesess can only be

achieved by an extra degree of freedom. Therefore, MI does usually not occur during

the propagation of pulses in normal dispersive fibers.

Gain-guided solitons

By expanding the NLSE, in order to account for dissipative effects like gain or loss, other

classes of solutions can be found. In the context of mode-locked oscillators, the expansion
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is of particular importance as lasers are highly dissipative systems. Mathematically, this

can be simply realized by adding an additional linear term in Eq. 2.1. Depending on the

experimental situation and required complexity, the gain/loss can be treated by various

approaches. In its simplest form, the frequency dependence is treated by a parabolic

gain approximation.

Only one of the exact solutions of this expanded NLSE found application in real

optical systems and will therefore be described briefly. The stability of soliton solutions

under the impact of a limited gain bandwidth was studied by Bélanger et al. in Ref. [7].

Assuming a homogenously broadened gain, solutions with a hyperbolic secans shape

similar to Eq. 2.6 can be obtained. The four parameters of the solution are determined

by a set of equations restricting the parameter range for stable pulses. The fundamental

soliton solution is recovered when an area theorem similar to Eq. 2.7 is fulfilled.

The so-called gain-guided solitons are weakly chirped pulses which are stable in the

anomalous as well as in the normal dispersion regime. In the anomalous dispersion

regime, the obtained solution underlies the same restrictions as mentioned above and

will not be discussed further.

Solitons at normal GVD are at first astonishing as the phase behavior of GVD and

SPM is cummulative resulting in temporal broadening during propagation. Gain-guided

solitons are - compared to fundamental solitons - formed by a different mechanism.

A limited gain spectrum (which is in practice always the case) provides a frequency-

dependent amplification damping the high- and low-frequency wings. For a chirped

pulse, spectral and temporal influences are equalized, so the pulse gets shortened. This

effect can be balanced by GVD induced temporal broadening. In the frequency domain,

gain narrowing of the pulse spectrum is balanced by the generation of new frequency

components by SPM. This balance occurs locally which is reflected by the fact that

gain-guided solitons are analytic solutions. Only these chirped solutions are stable in

the presence of normal GVD.

In the context of this thesis one consequence derived in Ref. [7] is of particular interest.

The solution is only valid if the pulse width is related to the gain bandwidth and the

excess gain sustaining the pulse. Due to the competition between the solitary wave and

cw-radiation, the stability relies on the last parameter because. This is basically the

same restriction as for fundamental solitons when they are perturbed by gain and losses,

respectively. From an experimental point of view, this indeed gives restrictions to the

setup but allows to classify observed pulses.
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