Chapter 1

INTRODUCTION

An embedded system is a micro computer system that is embedded
into another technical device that itself does not appear as a computer.
Embedded systems can be found everywhere. Examples are telecom-
munication devices, consumer electronics, automotive systems, building
technology, etc. Embedded systems have a very high influence on the
system industry. Nowadays, modern products cannot be realized in a
competitive manner without embedded micro computer systems.

Embedded systems have to fulfill a large variety of requirements to
be fully functional and accepted. One important requirement that is
imposed on embedded systems is dependability. Dependability is im-
portant since embedded systems are often safety-critical. Examples are
aircrafts, cars, and trains. The notion of dependability covers several im-
portant aspects reaching from reliability and availability to safety and
security.

Another important requirement is efficiency. There are many differ-
ent metrics for efficiency that are applied to embedded systems. One
important metric, that is often also related to dependability, is run-time
efficiency. For instance, the environment may impose certain timing
constraints on the system, meaning that the system must not only pro-
duce correct results, but in addition must deliver these timely. In this
case we speak about an embedded real-time system. In this thesis we
focus on complex embedded systems that are subject to such real-time
constraints. However, there are a large variety of additional efficiency
metrics that are important, including energy consumption, code-size,
weight, cost, etc.

Today, many embedded system applications are implemented using
distributed architectures, consisting of several hardware nodes intercon-

2 Introduction

nected in a network. Thereby, each hardware node consists of a proces-
sor, memory, interfaces to I/O and to the network. The networks are ar-
bitrated by specialized communication protocols that depend on the ap-
plication area. For example, in the automotive electronics area commu-
nication protocols such as CAN [15, 1], Flex Ray [33], and TTP [120, 60]
are common.

1.1 Design flow today

In this section we give a short overview of modern design flows for
embedded systems. This overview is not meant to be exhaustive. It
rather introduces the basic concepts and imposed requirements, which
are then discussed using two popular example design flows: the Y-model
known from hardware-software co-design, and the V-model utilized in
the automotive industry. Based on these two design flows we will later
motivate the techniques and contributions presented in this thesis.

1.1.1 Basic concepts

A coarse-grain overview of the embedded design flow is shown in Fig-
ure 1.1 (compare e.g. [26]).

Specification

Exploration

19b.ie]

)
a
o
—
o
=
<
)
—
=
o
Y
=
o
=

p -
-
(]
=
-
D
(]
-
c
-
D

Implementation

Fig. 1.1: Embedded Systems Design Flow - Coarse-grain overview

First of all the functionality that shall be realized by an embedded
system must be specified. This is generally done using different spec-
ification languages with specialized models of computation. Examples
are state charts [44], the ESTEREL programming language [9], data
flow process networks [66], etc. Thereby, the choice of the utilized spec-
ification language very much depends on the type of application that
shall be realized. State charts, for instance, are well suited for design-

Design flow today 3

ing reactive applications (e.g. safety in the car: ABS, airbag, etc.),
whereas data flow process networks best fit transformative applications
(e.g. video processing, digital signal processing, etc.). However, usually
not all needed components are designed from scratch. Some components
may be re-used from previous designs (legacy code), or are purchased as
intellectual property (IP) from external suppliers.

Often the developed specifications represent executable models of the
desired system functionality. These so-called executable specifications
enable the designer to perform early system optimization and design
space exploration. For instance, data flow process networks are well
suited to optimize buffer requirements and throughput of filtering appli-
cations. Generally, design space explorations based on such executable
specifications help the designer to choose between functional alterna-
tives, perform hardware-software partitioning, take scheduling decisions,
etc.

The specification phase is usually performed without explicit consid-
eration of the target architecture. This is attractive, since it allows the
designer to focus on functional correctness ignoring the verification of
the concrete implementation. However, once the executable specifica-
tions satisfy functional requirements, the focus shifts to target archi-
tecture design and implementation. Often parts of the architecture are
fixed. Reasons include the need to utilize standard components (proces-
sor, memory, bus, RTOS, etc.), and maximum cost and size constraints
per unit. During the implementation phase the main challenge is to
ensure functional correctness, while successfully integrating all compo-
nents onto the target architecture under the constraints imposed by the
limited service capacity of the available resources.

At the current state-of-the-art, none of the above mentioned design
steps can be guaranteed to be correct. Therefore, usually a test-bench
is developed in parallel to validate the correctness of the intermediate
or final design representations and implementations. Typically, various
properties need to be validated to ensure the correctness of the developed
system, including performance, dependability, energy consumption, etc.

In case the designers encounter difficulties during implementation,
i.e. for instance non-compliance of the resulting system with required
performance properties, they need to get back to the exploration or
specification phase to find better alternative implementations. In the
worst-case parts of the functionalities need to be re-designed, or the
target architecture must be modified.

4 Introduction

1.1.2 The Y-model

As a popular representative of an iterative design flow with successive
refinements we now shortly discuss the Y-model known from hardware-
software co-design [30]. A simplified version of the Y-model is shown in
Figure 1.2.

Architecture

Mapper / Compiler

architecture adaptation
* instruction set optimization
= data path oplimization ...

Analysis / Simulation

Performance Metrics

« timing
« power consumption
* cost

Fig. 1.2: Y-model known from HW /SW co-design

As in the generic embedded system design flow discussed above, the
first step in the Y-model design flow consists in specifying platform-
independent models for the intended functionality. Based on these mod-
els, object code is compiled and mapped on the target architecture. The
resulting intermediate implementation is then tested and evaluated with
respect to timing, power consumption, cost, etc., using simulation and
analysis. Based on these metrics the designer decides about architecture
and/or code adaptations. This process is iteratively repeated until a
satisfactory design is found. Obviously, to evaluate a large number of
different architectures, and thus to potentially obtain a better final im-
plementation, it is desirable to achieve short turn-around times for one
iteration.

The risk that is linked to the design flow according to the Y-model is
relatively small, since the designer can react in each iteration to perfor-
mance problems and solve them.

1.1.3 The V-model

The Y-model defines a very efficient design flow for hardware-software
co-design. However, to be fully applicable an important prerequisite is
that one design team controls most of the design parameters. Therefore,
it only partly fits design tasks with shared responsibilities requiring sub-
system integration. This is, for instance, an important issue in the auto-
motive industry. Different sub-systems are independently developed and

Design flow today 5

delivered by multiple external suppliers, and the OEM! has to integrate
these into the car under a huge amount of constraints, including perfor-
mance, safety, reliability, and consumer demands. In order to overcome
this huge integration problem the so-called V-model [75] is used in the
automotive industry. Figure 1.3 shows a basic version.

Requirements Requirements Test

System Design System Test

\ I

Component Design <fssssssssss Component Test Suppliers

) R4

Function Design <fsm Function Test

7

Fig. 1.3: V-model utilized in the automotive industry [75]

The V-model is based on the traditional top-down system engineer-
ing approach. First, the requirements imposed on the overall system
are specified. Based on these requirements the OEM performs system
design. This consists in the definition of the overall structure of the
system functionalities and their interactions. Afterwards, the system is
partitioned into several components, which are independently designed
and tested by external suppliers according to given specifications. Once
component design is finished the OEM’s task is to integrate the deliv-
ered components into the final system, which mainly consists of network
integration and a large amount of testing.

However, besides this idealized design flow an automotive system is
usually not developed from scratch. In most cases an existing board
net is taken as baseline for development. In other words, by reusing
existing components time, work, and money can be saved. The V-model
is, therefore, often supplemented by bottom-up methods. This does not
compromise the V-model, since design has still to go through all the
stages.

The basic V-model shown in Figure 1.3 also contains iterative refine-
ments. However, these iteration are performed relatively late on proto-

1 Original Equipment Manufacturer

6 Introduction

types or real implementations. Consequently, iterative refinements are
far more time intensive compared to the Y-model, and thus very ex-
pensive. Complex OEM-supplier dependencies additionally complicate
design iterations.

In order to circumvent this problem the V-model was extended by the
concept of virtual design (compare e.g. [34] and [104]). Figure 1.4 shows
the extended V-model.

+ Real Design

Virtual Design
b Y r 4

nequirements\) / Requirements Test

System Design Virtual System Test

\ /7

Virtual Implnmmtntiuﬁ ‘ufirtl.ul Component Test Real System Test

o

Real Implementation Real Component Test

Virtual Prototype — @

@® — Real Prototype

Fig. 1.4: V-model extended with the concept of virtual design [34, 104]

The extended V-model differs from the basic V-model in that it con-
tains a second (smaller) V that is used to iteratively refine a virtual
system model. Design iterations based on such abstract virtual models
are usually far less time consuming and allow, therefore, to efficiently
explore the design space. This is of great help for the system architect to
choose an optimal system architecture (i.e. topology, number of nodes,
number of buses, etc.) as well as an efficient function mapping.

1.2 Increasing design efficiency through reuse
and modularity

In the development process of complex distributed embedded systems,
reuse is recognized as key factor to meet growing productivity demands
and cost pressure. In the ideal case whole product families and variants
are based on the same set of reusable components allowing the designers
to concentrate on basic differences between the products.

One important trend to achieve a high level of reusability is the so-
called platform-based design. Nowadays, embedded system architectures
are usually not designed from scratch. Instead so-called platforms are

Increasing design efficiency through reuse and modularity 7

used. Platforms are programmable MpSoCs (multi processor system-on-
chip) consisting of (multiple) cores, co-processors, specialized hardware
components, buses, bridges, interfaces, etc. Platforms are often tailored
for specific application domains. Examples are the Nexperia platform
for multimedia and mobile digital audio applications from NXP [78], or
the Tricore TC1796 platform from Infineon [110] used in the automotive
domain (Figure 1.5).

SRAM (48 KB) TriCore Data RAM

ICache (16 KB) (TC1M) (64 KB)

SRAM
(80 kB)

-
~a

processors

System
4-» = weakly prog.
co-processors
i reused

ROM (16 KB)
programmable

Peripheral Code
Core RAM
Processor (16 KB)

CAN Bus
Interf. (4)

RAM

(16 KB)

ASC(2)

Bus interface DMA components(IP)
GPTA(2) System Peripheral Bus 3 memories

interface&
control

Fig. 1.5: Block diagram of the Infineon Tricore TC1796 micro-controller
for automotive applications [110]

The platform-based design style is a so-called meet-in-the-middle ap-
proach. It combines the power of top-down methods with the efficiency
of bottom-up styles [101]. Platform-based design can drastically reduce
time to market while decreasing development and production costs [19].
ST Microelectronics estimates that each platform can lead to four or five
products per year and, frequently, ten or more products over the lifetime
of the platform [19].

In parallel there exist also efforts to standardize important system
functionalities to ensure modularity, maintainability, reusability, scala-
bility, and transferability on the software level. The Artist roadmap [14]
identifies software as one key factor to successfully integrate compo-
nents and sub-systems into complete systems. Classical middleware ap-
proaches such as CORBA [21] and COM/DCOM [20] are good examples
for successful approaches to software modularization. Another promi-
nent example known from the automotive industry is the AUTOSAR
initiative [5]. The core idea of AUTOSAR is the definition of a run-time
environment (RTE) executing so-called software components that com-

8 Introduction

municate over a Virtual Function Bus (VFB). According to this concept,
two functionalities can exchange data without knowing the exact com-
munication path by using abstract communication ports of the RTE.
Consequently, software can be developed independently of the real ECU
topology in the car. The communication paths are defined relatively
late in the design process. Obviously, such middleware concepts facili-
tate software portability and reusability.

1.3 Motivation

The platform-based design style and the standardization efforts on
the software level help to increase design efficiency at the functional
level. Example scenarios include the integration of several functionalities
from different suppliers on the same node, or the distribution of (safety-
critical) functionalities over several nodes. However, these concepts do
not solve another key embedded systems challenge: the control of per-
formance and other non-functional constraints, such as timing, power
consumption, or dependability during the design process and over the
service life of the product.

For instance, several components are often dependent on each other,
and their integration can lead to complex and hard to predict perfor-
mance degradation effects, which increase the design risk since they are
often discovered late during the integration phase. In automotive sys-
tems, for example, the active front steering (AFS) interacts with other
functionalities like the active roll stabilization (ARS). Also, not every
functionality has its own sensors, data like individual wheel speeds are
broadcasted over the bus and shared by many functionalities.

It is desirable to control the impact of sub-system integration on non-
functional system properties, both during the design flow and during
the lifetime of the product. The benefits are clear. The control of non-
functional properties helps the system architect, on the one hand, to
take the right design decisions before proceeding to implementation, and
thus to decrease the design risk. On the other hand, it also assists the
designer in conceiving systems with performance head-room for reuse,
future extensions, updates, and bug-fixes. However, in modern design
flows conformance to non-functional requirements is difficult to ensure,
which is mainly due to the increasing size and complexity of modern
systems, and the concurrent design [65] between OEM and suppliers
involving dozens of parallel activities that need to be coordinated. As a
consequence performance verification is still a major issue during design.

One possible approach to simplify sub-system integration is the so-
called conservative design. Its principle consists in eliminating all cou-
pling effects by strictly separating functionally independent sub-systems

Motivation 9

spatially and timely. The separation is achieved by assigning fixed mem-
ory spaces as well as static shares of communication and computational
resources to each sub-system. Obviously, this strategy eliminates all
complex timing effects and solves the integration problem. However, the
resulting systems are not very efficient in terms of resource utilization
and, thus, system efficiency and cost, since the statically assigned re-
sources are not released for other functionalities in case of disuse. While
this might be acceptable for highly safety critical systems, like for in-
stance in avionics, such over-design is not an alternative in most other
industrial sectors, including consumer electronics or automotive systems.

A promising starting point to overcome integration challenges while
ensuring system efficiency are state-of-the-art performance analysis method-
ologies that have been proposed in the last decade [79, 77, 115, 84, 43,
113, 50, 46]. The different approaches operate at different levels of ab-
straction and allow a step-wise refinement of the utilized application and
execution platform models. Figure 1.6 shows how performance verifica-
tion can be applied along the V-model.

Requirements Requirements Test
System System Timing
Specification Verification
System Design System Test
Network Timing Network Timing
Estimation Verification
Component Design Component Test
CPU Timing CPU Timing
Estimation Verification
Function Design Function Test

Function Timing
Evaluation

Fig. 1.6: Performance verification along the V-model

During the specification phase system performance is characterized
based on data estimates. Even though this information might be coarse-
grain and partly incomplete at the beginning, it can be utilized to derive
first performance approximations helping the system architect to take ar-
chitectural or mapping decisions (e.g. number of ECUs, bus bandwidth,
etc.). Later, during component design and integration, these estimations
can be refined step-by-step to obtain more accurate performance data.

Since the mentioned methods are based on rather abstract perfor-
mance models and are able to analyze even large systems in a short

10 Introduction

time, they are perfectly suited for design space exploration. Design
space exploration on top of these methods represents a valuable tool for
the system architect to take good design decisions and systematically
control system performance throughout the whole design process.

However, even though formal performance analysis methods are ca-
pable of deriving accurate performance data and are perfectly suited for
design space exploration, their integration into real-world design flows is
rather difficult. As a consequence, formal techniques have been mainly
(successfully) applied to characterize and solve isolated performance is-
sues like, for instance, timing analysis of single ECUs [97], bus bottleneck
detection [98], or bus configuration [16]. A systematic and continuous
performance verification flow spanning the whole design process allowing
to control and optimize system performance is not trivial to accomplish.
There are several reasons for this.

The first reason is that system performance is not composable in the
general case. In other words, the system integrator (OEM) cannot auto-
matically conclude that the integrated system satisfies its performance
constraints from the fact that all supplied components are compliant to
their specifications. The reason are complex performance dependencies
that can often only be discovered during integration. One possibility to
overcome this problem is to continuously verify and control performance
during the design process across all involved design teams. However,
in real-world design flows with OEM-supplier dependencies the required
information exchange is problematic due to IP (intellectual property)
protection issues. In fact, each of the involved design teams controls
different parts of the system and is reluctant to share realization details.

There exist first approaches to solve this problem. The authors of [98],
for instance, propose that each involved design team individually per-
forms component-level analysis and communicates relevant results to
functionally dependent system parts along the supply chain. By itera-
tively repeating such local analysis steps, OEM-supplier spanning timing
analysis can be realized. Note that the performance data that needs to
be exchanged mainly describes the dynamic communication behavior of
the involved components (e.g. message jitters and frame offsets), and
represents uncritical information with respect to IP protection. How-
ever, to fully exploit the benefits of formal methods in the context of
concurrent design flows, such practical solution approaches for perfor-
mance verification must be complemented with a flexible design space
exploration framework of similar structure that supports iterative par-
tial exploration steps at component level. The introduction of such an
exploration framework is one of the aims of this thesis.

