
Chapter 1

Fundamentals

Magnetocrystalline anisotropy (MCA) of a RE-TM compound is the basic ingredient

for the high coercivity of a modern hard magnetic material and its origin is thus both

of fundamental and technological interest. Only a full understanding and analysis of

MCA allows to tailor the properties of magnetic materials. This chapter discusses

the phenomenology of anisotropy, spin reorientation, and its physical origin and

analysis. Moreover, it includes different approaches to determine the anisotropy

constants from the measurement and a brief literature survey on the intrinsic and

extrinsic properties of different Pr-Co phases, prepared as a bulk or thin film magnet.

1.1 Phenomenological description of anisotropy and

hysteresis

In magnetic materials, directional dependence of magnetic properties is known as

magnetic anisotropy, which is an essential property of permanent magnets. Different

types of magnetic anisotropy are:

• Magnetocrystalline anisotropy (depends on crystal structure)

• Shape anisotropy (depends on shape of the grains and the whole sample)

• Magnetoelastic anisotropy (depends on applied or residual stresses)

• Induced anisotropy (depends on process treatment, e.g. field annealing)

Magnetic anisotropy strongly affects the shape of the hysteresis loops and controls

the coercivity and remanence. In the case of RE-TM, MCA is the dominant form
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of anisotropy and it will be discussed in more detail in this work. Presence of MCA

leads to easy and hard directions of magnetization. In easy directions it is easier to

magnetize the material compared to the hard directions. As an example, Fig. 1.1

shows the hysteresis loops of a strongly anisotropic magnet with field applied along

the easy and hard directions.
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Figure 1.1: Magnetic hysteresis loop of a magnet measured with field applied along
the easy and hard axis.

MCA is the energy required to deflect the magnetic moment from the easy to

the hard directions. For a hexagonal crystal of CaCu5 type the anisotropy energy

density can be written in a general form as:

Ea = K0 + K1 sin2 θ + K2 sin4 θ + (K3 + K ′
3 cos 6φ) sin6 θ (1.1)

where K0, K1, K2, K3 and K ′
3 are anisotropy constants, θ is the angle between the

magnetization vector and the c-axis, and φ is the angle between the magnetization

component in the basal plane and the a-axis (Fig. 1.2). K0 is independent of angle

and is usually ignored. Higher order terms like K3 and K ′
3 are very small compared

to K1 and K2 and are often not considered. In most cases, it is sufficient to consider

K1 and K2, and their magnitude and sign determine the preferred direction of the

magnetization vector for given conditions, by bringing the anisotropy energy to a
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Figure 1.2: Direction of the polarization vector relative to the c-axis and the a-axis
defining the angles θ and φ.

Table 1.1: Different categories of easy magnetization direction.

Conditions Emin for Category

K1 > 0, K1+K2 > 0 θ = 0◦ easy axis
K1 < 0, K1+K2 < 0 θ = 90◦ easy plane

K1 < 0, 2K2 > −K1 θ = sin−1
√

−K1

2K2
easy cone

minimum. Different cases are shown in Table 1.1 and the corresponding energy

profile as a function of θ is depicted in Fig. 1.3.

In case of K1 > 0, and K1+K2 > 0, the anisotropy energy is minimum for θ = 0

and 180◦, thus the magnetization vector lies preferably along (two possible directions

of) the c-axis. This case is called an easy axis configuration. On the other hand, for

K1 < 0, and K1+K2 < 0, the minimum occurs for θ = 90◦, which corresponds to

the magnetization vector in the basal plane. As K ′
3 is ignored in this schematic rep-

resentation, no additional orientation within the basal plane is preferred, so that the

whole plane has equally low energy. Thus, this case is called easy plane anisotropy.

In the case of K1 < 0, and 2K2 > −K1, the minimum in the anisotropy energy is

observed for 0◦ < θ < 90◦; the magnetization vector lies at a certain angle (< 90◦)

with respect to the c-axis. This situation corresponds to an easy cone behavior

(Table 1.1).
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Figure 1.3: Variation of the anisotropy energy as a function of θ.

In an applied magnetic field, the total energy density for a hexagonal crystal can

be written as the sum of the anisotropy term1(see eqn. 1.1) and Zeeman term:

Etot = K1 sin2 θ + K2 sin4 θ − HJS cos(α − θ) (1.2)

Here, H is the magnitude of the external field, JS is the saturation polarization

easy axis

JS H

�

�

c-axis

a-axis

at a given temperature and α is the angle between
−→
H and the c-axis. As shown in

Fig. 1.3, the minimum in the anisotropy energy is observed at θ = 0 and 180◦ for

1Here, higher order terms are neglected.



1.1. Phenomenological description of anisotropy and hysteresis 9

K1 > 0, K1+K2 > 0 (T = 300 K). Moreover, on application of the external field

parallel to the c-axis (α = 0), the energy minimum always lies at 0◦ and thus the

polarization (J = JScosθ) always reaches the saturation (see Fig. 1.4 (•)).

When the field H is applied along the hard axis (⊥ to the c-axis), eqn. 1.2 can be

written as:

Etot = K1 sin2 θ + K2 sin4 θ − HJS sin θ (1.3)

Magnetization along a hard axis proceeds via the rotation of the magnetization

vector from the easy axis to the hard axis. Thus, the polarization along the hard axis

(J⊥ = JSsinθ) increases linearly with the field, and saturation in the polarization is

achieved only at a field value of the anisotropy field (see Fig. 1.4 (×)). The preferred

direction of the magnetization vector can be obtained by minimizing eqn. 1.3.

dEtot

dθ
= 2K1 sin θ cos θ + 4K2 sin3 θ cos θ − HJS cos θ = 0, (1.4)

which leads to:

H =
2K1 sin θ + 4K2 sin3 θ

JS

(1.5)

The anisotropy field HA is the field value required to align the magnetization per-

pendicular to the easy axis, i.e., θ = 90◦. From eqn. 1.5 thus follows:

HA =
2K1 + 4K2

JS

(1.6)

Experimentally measured values of the anisotropy field, HA, are obtained as the

Figure 1.4: Magnetization measurements of YCo5 [Ala81, dTdL05].
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intersection of the easy axis and hard axis measurement curve with the field parallel

and perpendicular to the easy axis, respectively2(see Fig. 1.4).

When K2 is negligible, measurement of HA allows to determine K1. However

in many materials, K2 plays a significant role (definitely at low temperatures for

most cases). Then the measurement of HA is not sufficient to determine K1 and

K2 individually. The most common approaches for determination of anisotropy

constants are:

• Sucksmith and Thompson approach (ST approach)

• Angular dependent magnetization measurements

Sucksmith and Thompson approach:

The Sucksmith and Thompson approach [Suc54] considers the magnetization curve

of a uniaxial magnet measured in a direction perpendicular to the easy axis and is

based on the relation:
H

J
=

2K1

J2
S

+
4K2

J4
S

J2 (1.7)

which can be derived from eqn. 1.5 by substituting sin θ = J/JS, where J(H) is the

polarization along the hard axis. When H/J is plotted versus J2, the anisotropy

constant K1 and K2 are derived from the vertical intercept and slope of the straight

line, respectively. Equation 1.7 considers the perfect alignment of the grains, so

substantial error arises due to misalignment of the grains (such as in the case of a

powdered and textured sample, and even in the case of epitaxial samples with low

texture quality) in determination of K1 and K2. For such a case, the modified ST

approach proposed by Ram and Gaunt [Ram83] is used, which takes into account

the misalignment of the grains (texture spreading). In the modified ST approach,

H/γ(J − JR) is plotted versus γ2(J − JR)2, where JR is the remanence polarization

in the hard direction and γ = (JS−JR)/JS is the alignment factor. Shown in Fig. 1.5

is a modified ST plot for a Nd2Fe14B thin film.

The ST approach is quite useful in determination of anisotropy constants. How-

ever, this approach is restricted to K1 and K2. In some materials, K3 plays a dom-

inant role and the complete magnetization curve can not be understood without

2In case of lack of experimental facility for high field measurements, extrapolated intersection of
the easy and hard axis curves yield an estimated value of HA.


