Inhaltsverzeichnis

1	Einleitung							
2	1300 nm VCSEL und deren fundamentale Eigenschaften							
	2.1	Schich	taufbau und Struktur	5				
	2.2	Funkti	ionsprinzip	7				
		2.2.1	Laserresonator	8				
		2.2.2	Schwellgewinn	10				
		2.2.3	VCSEL-Struktur mit Intracavity-Kontakten	11				
		2.2.4	VCSEL-Struktur mit hybridem Design	13				
	2.3	Moder	nentwicklung und Resonatordesign	15				
	2.4 Stationäres Verhalten							
		2.4.1	Elektrooptische Charakteristik	19				
		2.4.2	Spektrale Charakteristik	20				
	2.5	Dynar	nisches Verhalten	22				
3	1300 nm VCSEL mit einmodiger Emission 24							
	3.1	Realisierung von einmodiger Emission						
		3.1.1	Modenselektive Verluste durch Resonatorrelief	25				
		3.1.2	Halbleiter- und Metallrelief	28				
		3.1.3	Bewertung und Ausblick	30				
	3.2	Halble	eitertechnologie für Modenprofilätzung	30				
		3.2.1	VCSEL-Prozessierung mit Metallrelief	31				
		3.2.2	VCSEL-Prozessierung mit Halbleiterrelief	39				
	3.3	Gleich	stromcharakterisierung einmodiger VCSEL	42				
		3.3.1	Abhängigkeit von den Relieftypen und der Reliefgeometrie	42				
		3.3.2	Abhängigkeit von der Oxidapertur und der Reliefgeometrie	46				
		3.3.3	Spektrale Charakteristik	51				
		3.3.4	Temperaturbereichsoptimierung einmodiger 1300 nm VCSEL	57				
		3.3.5	Thermischer Widerstand	58				
		3.3.6	1350 nm VCSEL für CWDM-Anwendungen	60				
		3.3.7	Polarisationsverhalten	61				
	3.4	Hochf	requenzcharakterisierung der einmodigen VCSEL	62				

		3.4.1	Kleinsignalmodulation	63 64					
	3.5	5.4.2 Großsignannodulation							
4	Opt	Optoelektronische Mikrogehäuse							
	4.1	1 Aufbautechnik der optoelektronischen Mikrogehäuse							
	4.2	Optische Kopplungsprinzipien							
		4.2.1	Stirnkopplung	72					
		4.2.2	Linsenkopplung	73					
	4.3	Justier	r- und Fixiertechniken	73					
		4.3.1	Aktive Justage	74					
		4.3.2	Passive Justage	74					
	4.4	TSSO	P-SMT-Gehäuse- und Koppelkonzept für den 1300 nm VCSEL $~$.	75					
	4.5	Charal	kterisierung des TSSOP-Gehäuses mit Linsen-Koppelkonzept	79					
		4.5.1	Optische Ausgangskennlinien	79					
		4.5.2	Fernfeldcharakteristik	80					
		4.5.3	Koppeleffizienz der TOSAs mit Linsenkopplung	82					
5	Fase	er-Chip	-Stirnkopplung für 1300 nm VCSEL	83					
	5.1	Lichteinkopplung in Einmodenfasern							
		5.1.1	Simulation der Koppeleffizienz	85					
		5.1.2	Simulation der Justiertoleranzen	88					
		5.1.3	Simulation der Koppeleffizienzen und -toleranzen mit Raytracing .	90					
	5.2	Vorunt	tersuchungen zur selbstjustierenden Faser-Chip-Kopplung \ldots .	94					
		5.2.1	Mechanische Simulation der Rückstellkräfte	96					
		5.2.2	Mechanische Simulation der Faserbiegekräfte	100					
	5.3	Halble	itertechnologie für selbstjustierende Faser-Chip-Kopplung $\ .\ .\ .$	102					
		5.3.1	Entwicklung, Technologie und Ergebnisse der Teststrukturen	102					
		5.3.2	VCSEL-Prozessierung mit integrierter Koppelstruktur	104					
	5.4	Charal	kterisierung der selbstjustierenden Faser-Chip-Kopplung	107					
		5.4.1	Elektrooptische Ausgangskennlinien und Spektren	107					
		5.4.2	Fernfelder	108					
		5.4.3	Koppeleffizienz	110					
		5.4.4	Justiertoleranzen	113					
	5.5	Signal	übertragungsverhalten für die Stirnkopplung	118					
		5.5.1	Kleinsignalmodulation	118					
		5.5.2	Großsignalmodulation	121					
	5.6	Vergle	ich: selbstjustierende Faser-Chip-Kopplung und TSSOP-Ergebnisse	124					
		5.6.1	Aufbaukonzept für die selbstjustierende Faser-Chip-Kopplung $\ $.	124					
		5.6.2	Bewertung der Aufbaukonzepte	125					

6 Zusammenfassung und Ausblick

Veröffentlichungen	131
Patente	131
Wissenschaftliche Veröffentlichungen/Vorträge	131
Literaturverzeichnis	133