Inhaltsverzeichnis

1	Einl	Einleitung						
2	1300 nm VCSEL und deren fundamentale Eigenschaften							
	2.1		ntaufbau und Struktur	3 5				
	2.2		ionsprinzip	7				
		2.2.1	Laserresonator	8				
		2.2.2	Schwellgewinn	10				
		2.2.3	VCSEL-Struktur mit Intracavity-Kontakten	11				
		2.2.4	VCSEL-Struktur mit hybridem Design	13				
	2.3	Mode	nentwicklung und Resonatordesign	15				
	2.4	Statio	näres Verhalten	19				
		2.4.1	Elektrooptische Charakteristik	19				
		2.4.2	Spektrale Charakteristik	20				
	2.5	Dynar	misches Verhalten	22				
3	1300 nm VCSEL mit einmodiger Emission 2							
	3.1	Realis	ealisierung von einmodiger Emission					
		3.1.1	Modenselektive Verluste durch Resonatorrelief	25				
		3.1.2	Halbleiter- und Metallrelief	28				
		3.1.3	Bewertung und Ausblick	30				
	3.2	Halble	eitertechnologie für Modenprofilätzung	30				
		3.2.1	VCSEL-Prozessierung mit Metallrelief	31				
		3.2.2	VCSEL-Prozessierung mit Halbleiterrelief	39				
	3.3	Gleich	stromcharakterisierung einmodiger VCSEL	42				
		3.3.1	Abhängigkeit von den Relieftypen und der Reliefgeometrie	42				
		3.3.2	Abhängigkeit von der Oxidapertur und der Reliefgeometrie	46				
		3.3.3	Spektrale Charakteristik	51				
		3.3.4	Temperaturbereichsoptimierung einmodiger 1300 nm VCSEL	57				
		3.3.5	Thermischer Widerstand	58				
		3.3.6	1350 nm VCSEL für CWDM-Anwendungen	60				
		3.3.7	Polarisationsverhalten	61				
	3.4	Hochf	requenzcharakterisierung der einmodigen VCSEL	62				

	3.5	3.4.1 3.4.2 Lebens	Kleinsignalmodulation							
4	Opt	Optoelektronische Mikrogehäuse 7								
	4.1		utechnik der optoelektronischen Mikrogehäuse	70						
	4.2		he Kopplungsprinzipien	72						
		4.2.1	Stirnkopplung	72						
		4.2.2	Linsenkopplung	73						
	4.3	Justier	- und Fixiertechniken	73						
		4.3.1	Aktive Justage	74						
		4.3.2	Passive Justage	74						
	4.4	4 TSSOP-SMT-Gehäuse- und Koppelkonzept für den 1300 nm VCSEL								
	4.5	Charal	kterisierung des TSSOP-Gehäuses mit Linsen-Koppelkonzept	79						
		4.5.1	Optische Ausgangskennlinien	79						
		4.5.2	Fernfeldcharakteristik	80						
		4.5.3	Koppeleffizienz der TOSAs mit Linsenkopplung	82						
5	Fase	Faser-Chip-Stirnkopplung für 1300 nm VCSEL								
	5.1	Lichtei	inkopplung in Einmodenfasern	83						
		5.1.1	Simulation der Koppeleffizienz							
		5.1.2	Simulation der Justiertoleranzen	88						
		5.1.3	Simulation der Koppeleffizienzen und -toleranzen mit Raytracing .							
	5.2		tersuchungen zur selbstjustierenden Faser-Chip-Kopplung	94						
		5.2.1	Mechanische Simulation der Rückstellkräfte							
		5.2.2	Mechanische Simulation der Faserbiegekräfte							
	5.3		itertechnologie für selbstjustierende Faser-Chip-Kopplung							
		5.3.1	Entwicklung, Technologie und Ergebnisse der Teststrukturen							
		5.3.2	VCSEL-Prozessierung mit integrierter Koppelstruktur							
	5.4		kterisierung der selbstjustierenden Faser-Chip-Kopplung							
			Elektrooptische Ausgangskennlinien und Spektren							
		5.4.2	Fernfelder							
		5.4.3	Koppeleffizienz							
		5.4.4	Justiertoleranzen							
	5.5	_	übertragungsverhalten für die Stirnkopplung							
		5.5.1	Kleinsignalmodulation							
	- 0	5.5.2	Großsignalmodulation							
	5.6	_	ich: selbstjustierende Faser-Chip-Kopplung und TSSOP-Ergebnisse							
		5.6.1	Aufbaukonzept für die selbstjustierende Faser-Chip-Kopplung							
		5.6.2	Bewertung der Aufbaukonzepte	125						
6	Zusa	ammen	fassung und Ausblick	127						

Veröffentlichungen	131
Patente	131
Wissenschaftliche Veröffentlichungen/Vorträge	131
Literaturverzeichnis	133