
Scope of this work

This work is concerned with a selection of statistical methods based on the principle of

recursive partitioning: classification and regression trees (termed classification trees in the

following for brevity, while most results apply straightforwardly to regression trees), robust

classification trees and ensemble methods based on classification trees.

From a practical point of view these methods have become extremely popular in many

applied sciences, including genetics and bioinformatics, epidemiology, medicine in general,

psychiatry, psychology and economics, within a short period of time – primarily because

they “work so well”. From a statistical point of view, on the other hand, recursive parti-

tioning methods are rather unusual in many respects; for example they do not rely on any

parametric distribution assumptions.

Leo Breiman, one of the most influential researchers in this field, has promoted “algorithmic

models” like classification trees and ensembles methods in the late years of his career

after he had left academia to work as a consultant and made the experience that current

statistical practice has “Led to irrelevant theory and questionable scientific conclusions;

Kept statisticians from using more suitable algorithmic models; Prevented statisticians

from working on exciting new problems” (Breiman, 2001b, pp. 199–200).

Today, the scientific discussion about the legitimacy of algorithmic models in statistics

continues, as illustrated by the contribution of Hand (2006) in Statistical Science with the

provocative title “Classifier Technology and the Illusion of Progress” and the multitude of

comments that were triggered by it. Of these comments, the most consensual one may be

the reply of Jerome Friedman, another highly influential researcher in the field of statistical
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learning, who states: “Whether or not a new method represents important progress is, at

least initially, a value judgement upon which people can agree or disagree. Initial hype can

be misleading and only with the passage of time can such controversies be resolved. It may

well be too soon to draw conclusions concerning the precise value of recent developments,

but to conclude that they represent very little progress is at best premature and, in my

view, contrary to present evidence” (Friedman, 2006, p. 18).

The “evidence” that Friedman refers to can be found in several benchmark studies showing

that the ensemble methods bagging and random forests, that are considered here, together

with other computerintensive methods like boosting (Freund and Schapire, 1997) and sup-

port vector machines (Vapnik, 1995), belong to the top performing statistical learning tools

that are currently available (Wu et al., 2003; Svetnik et al., 2004; Caruana and Niculescu-

Mizil, 2006). They outperform traditional statistical modelling techniques in many situa-

tions – and in some situations traditional techniques may not even be applicable, as in the

case of “small n large p” problems that arise, e.g., in genomics when the expression level

of a multitude of genes is measured for only a handful of subjects. Another advantage of

these methods, as compared to other recent approaches that can be applied to “small n

large p” problems such as the LASSO (cf., e.g., Hastie et al., 2001), the elastic net (Zou

and Hastie, 2005), and the recent approach of Candes and Tao (2007), is that no linearity

or additivity assumptions have to be made.

Still, many statisticians feel uncomfortable with any method that offers no analytical way

to describe beyond intuition why exactly it “works so well”. In the meantime, Bühlmann

and Yu (2002) have given a rather thorough statistical explanation of bagging, and Lin

and Jeon (2006) have explored the properties of random forests by placing them in an

adaptive nearest neighbors framework. However, both approaches are based on several

simplifying assumptions (for example, linear models are partly used as base learners instead

of classification trees in Bühlmann and Yu, 2002), that limit the generalizability of the

results to the methods that are actually implemented and used by applied scientists.

In addition to these analytical approaches, several empirical studies have been conducted
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to try to help our understanding of the functionality of algorithmic models. Most of these

studies are based only on a few, real data sets that happen to be freely available in some

machine learning repository. It is important to note, however, that these data sets are

not a representative sample from the range of possible problems that the methods might

be applied to, and that their characteristics are unknown and not testable (for example

assumptions on the missing value generating mechanism). Therefore any conclusions drawn

from this kind of empirical study may not be reliable.

A very prominent example for a premature conclusion resulting from this kind of research

is the study referred to in Breiman (2001b), where it is stated (and has been extensively

cited ever since) that random forests do not overfit. This statement – and especially the

fact that it is based on a selection of a few real data sets with very particular features,

that enhance the impression that random forests would not overfit – is heavily criticized

by Segal (2004).

As opposed to such methodological “case studies”, here we want to rely on analytical results

as far as possible (that are available, e.g., for the optimally selected statistics and unbiased

entropy estimates suggested as split selection criteria in some of the following chapters).

When analytical results are impossible to derive for the actually used method (as in the

case of ensemble methods based on classification trees), however, we follow the rationale

that valid conclusions can only be drawn from well designed and controlled experiments –

as in any empirical science.

Only such controlled simulation experiments allow us to test our hypotheses about the

functionality of a method, because only in a controlled experiment do we know what is

“the truth” and what is “supposed to happen” in each condition. Therefore, throughout

the course of this work, analytical results will be presented in the early sections where

feasible, while well planned simulation experiments will be applied in the later sections,

where the functionality of complex ensemble methods is investigated and improved by

promoting an alternative resampling scheme and suggesting a new measure for reliably

assessing the importance of predictor variables.
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As illustrated in the chart at the end of this section, the outline of this work follows two

major issues, that have been shown to affect reliable prediction and interpretability in

classification trees and their successor methods: instability and biased variable selection.

When focusing on variable selection we will see that in the standard implementations,

variable selection in classification trees is unreliable in that predictor variables of certain

types are preferred regardless of their information content. The reasons for this artefact

are very fundamental statistical issues: biased estimation and multiple testing, as outlined

in Chapter 2. In single classification trees these issues can be solved by means of adequate

split selection criteria, that account for the sample differences in the size and the number

of candidate cutpoints. The evaluation of such a split selection criterion is demonstrated

in Chapter 3.

However, when the concepts inherent in classification trees are carried forward to robust

classification trees or ensembles of classification trees, deficiencies in variable selection

are carried forward, too, and new ones may arise. For robust classification trees this is

illustrated, and an unbiased criterion is presented in Chapter 4.

From Chapter 5 we will focus on the second issue of instability, that can be addressed

by means of robustifying the tree building process or by constructing different kinds of

ensembles of classification trees. When abandoning the well interpretable single tree models

for the more stable and thus better performing ensembles of trees, there is always a tradeoff

between stability and performance on one hand and interpretability on the other hand.

A lack of interpretability can crucially affect the popularity of a method. The steep rise of

some of the early so-called “black box” learners, such as neural networks (first introduced

in the 1980s; cf, e.g., Ripley, 1996, for an introduction), seems to have been followed by a

creeping recession – mainly because their decisions are not communicable, for example, to

a customer whose application for a loan is rejected because some algorithms classifies him

as “high risk”.

As opposed to that, single classification trees owe part of their popularity to the fact
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that the effect of each predictor variable can easily be read from the tree graph. Still,

the interpretation of the effect might be severely wrong because the tree structure is so

instable: due to the recursive construction and cutpoint selection, small changes in the

learning sample can lead to a completely different tree. Ensembles of classification trees

on the other hand are not directly interpretable, because the individual tree models are

not nested in any way and thus cannot be integrated to one common presentable model.

In this tradeoff between stability and interpretability, it would be nice if the user himself

could regulate the degree of stability he needs – and give up interpretability no more than

necessary. This idea is followed in a fundamental modification of the TWIX ensemble

method in Chapter 5: An ensemble is created only if necessary and reduces to a single tree

if the partition is stable.

In situations where the partition really is instable, however, the other ensemble methods

bagging and random forests usually outperform the TWIX method, because they not only

manage to smooth instable decisions of the individual classification trees by means of

averaging, but also additional variation is introduced by means of randomization, that

promotes locally suboptimal but potentially globally beneficial splits. In addition to that –

and as opposed to complete “black box” learners and dimension reduction techniques – they

provide variable importance measures that have been acknowledged as valuable tools in

many applied sciences, headed by genetics and bioinformatics where random forest variable

importance measures are used, e.g., for screening large amounts of genes for candidates

that are associated with a certain disease.

In such applications it is essential that variable importance measures are reliable. However,

there are at least two situations where the originally proposed methods show undesired arti-

facts: the case of predictor variables of different types and the case of correlated predictor

variables. In Chapter 6, a different resampling scheme is suggested to be used in com-

bination with unbiased split selection criteria to guarantee that the variable importance

is comparable for predictor variables of different types. The unbiased importance mea-

sures can then provide a fair means of comparison to decide which predictor variables are
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most important and should be explored in further analysis. Additional variable selection

schemes and tests for the variable importance have been suggested to aid this decision.

The statistical properties of such a significance test are explored in Chapter 7.

Another aspect, that becomes relevant in the case of correlated predictor variables, as

common in practical applications, is the distinction between marginal and conditional

importance, that correspond to different null hypotheses. In Chapter 8 this distinction

is facilitated and a new, conditional variable importance is suggested that allows for a

fair comparison in the case of correlated predictor variables and better reflects the null

hypothesis of interest. The theoretical reasoning and results presented in this chapter

show that, only when the impact of each variable is considered conditionally on their

covariates, it is possible to identify those predictor variables that are truly most important.

Thus, the conditional importance forms a substantial improvement for applications of

random forest variable importance measures in many scientific areas including genetics

and bioinformatics, where algorithmic methods have effectively gained ground already, as

well as new areas of application such as the empirical social and business sciences, for

which some first applications are outlined in Chapter 1.

Parts of the work presented here are based on publications that were prepared in cooper-

ation with coauthors named in the following:

Chapters References

parts of 1 Strobl, Malley, and Tutz (2008) and

Strobl, Boulesteix, Zeileis, and Hothorn (2007)

parts of 2 and 3 Strobl, Boulesteix, and Augustin (2007)

4 Strobl (2005)

parts of 5 Strobl and Augustin (2008)

6 Strobl, Boulesteix, Zeileis, and Hothorn (2007)

7 Strobl and Zeileis (2008)

8 Strobl, Boulesteix, Kneib, Augustin, and Zeileis (2008)
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