

Aurelié Toussaint (Autor) Boron-Bridged Bis(oxazolines) and their Use in Copper-Catalyzed Reactions

https://cuvillier.de/de/shop/publications/1401

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

1 Int	roduction	3
1.1	Asymmetric Catalysis Breakthrough	3
1.2	Industrial Applications of Chiral Transition-Metal Complexes	3
1.3	Privileged Ligands in Asymmetric Catalysis	7
1.4	Anionic and Neutral Ligands in Asymmetric Catalysis	8
1.5	Objectives of this Work	9
2 BO	X and Zwitterionic Ligands in Asymmetric Catalysis	15
2.1	BOX ligands in Asymmetric Catalysis	15
2.1.1	General Aspects	15
2.1.2	BOX ligands in Copper Asymmetric Catalysis	15
,	2.1.2.1 Cyclopropanation	17
,	2.1.2.2 Aziridination	19
,	2.1.2.3 Mukaiyama Aldol Reaction	20
,	2.1.2.4 Michael Reaction	21
2.2	Zwitterionic Complexes in Asymmetric Catalysis	22
3 Cha	aracteristics of Borabox Ligands	29
3.1	Synthesis of Borabox Ligands	29
3.2	Determination of the pK_a of the Borabox Ligand	31
3.3	Crystal Structures of Borabox Ligands	33
3.3.1	Homoleptic Borabox Complexes	33
3.3.2	Monomeric Borabox Complexes	34
3.4	Borabox Ligands in Asymmetric Catalysis	35
3.4.1	Cyclopropanation of Olefins	36
3.4.2	Desymmetrization of meso-Diols	38
3.4.3	Kinetic Resolution of 1,2-Diols	39
3.4.4	Allylic Substitution Reaction	42
4 Ap	plication of the Borabox Ligands in Asymmetric Catalysis	47
4.1	Chiral Lewis Acid Catalysis of the Diels-Alder Reaction	47
4.1.1	Literature	47
4	4.1.1.1 Introduction	47
4	4.1.1.2 Mechanistic Aspects	48
	4.1.1.2.1 Mode of Coordination of the Lewis Acid to the Dienophile	48
	4.1.1.2.2 Regiochemistry of the Complexation of the Lewis Acid to the Dienophile	49
	4.1.1.2.3 Conformation of the Dienophile	49
4	4.1.1.3 Lewis Acid Catalysts for the Enantioselective Diels-Alder Reaction	51

	4.1.1.3.1 Introduction	51
	4.1.1.3.2 Lewis Acid Catalysts Derived from Privileged Ligands	51
	4.1.1.3.2.1 Bis(oxazoline) ligands and Derivatives	51
	4.1.1.3.2.2 Dialy Derivatives 4.1.1.3.2.1 TADDOL Derivatives	63
	4.1.1.3.3 Chiral Boron Lewis Acids	63
4.1.2	Diels-Alder Reaction Catalyzed by Borabox Complexes	65
	4.1.2.1 Objectives	65
	4.1.2.2 Initial Screening and Role of the Base	66
	4.1.2.3 Conditions Screening and Results	67
	4.1.2.4 α '-Hydroxy Enones as Substrates for the Diels-Alder Reaction	72
	4.1.2.5 Conclusion	73
4.2	Friedel-Crafts Reaction	75
4.2.1	Literature	75
4.2.2	Results	78
4.3	Allylic Oxidation	81
4.3.1	Literature	81
4.3.2	Allylic Oxidation Catalyzed by Borabox Complexes	87
	4.3.2.1 Objectives	87
	4.3.2.2 Results	87
	4.3.2.3 Conclusion	92
5 A	pplication of the Borabox Ligands in Henry and Aza-Henry Reactions	95
5.1	Asymmetric Henry Reaction	95
5.1.1	Literature	95
	5.1.1.1 Introduction	95
	5.1.1.2 Rare Earth Metal Catalysis	96
	5.1.1.3 Copper Complexes in the Asymmetric Henry Reaction	99
	5.1.1.4 Zinc Complexes in the Asymmetric Henry Reaction	104
	5.1.1.5 Catalytic Asymmetric Henry Reaction of Silyl Nitronates with Aldehydes	105
	5.1.1.6 Asymmetric Organocatalytic Henry Reaction	107
	5.1.1.7 Other Catalysts for the Asymmetric Henry Reaction	109
5.1.2	Henry Reaction Catalyzed by Borabox Ligands	109
	5.1.2.1 Objectives	109
	5.1.2.2 Initial Screening	109
	5.1.2.3 Influence of the Amount of Base	113
	5.1.2.4 Scope of the Henry Reaction with Nitromethane	115
	5.1.2.5 Asymmetric Henry Reaction with Nitropropane	116
	5.1.2.6 Asymmetric Henry Reaction with Nitroethane	122
	5.1.2.7 Comparison of Privileged Ligands to Borabox Ligands	123
	5.1.2.7 Comparison of Firmegod Ergands to Dorubox Ergands	

	5.1.2.9 Conclusion	125
5.2	Asymmetric Aza-Henry Reaction	126
5.2	2.1 Literature	126
5.2	Aza-Henry Reaction Catalyzed by Borabox Complexes	128
6	Copper (II)-Complexes of C5-Substituted Borabox Ligands as Catalysts for the Asym	netric Henry
	Reaction	135
6.1	Introduction	135
6.2	Synthesis of C5-Substituted Borabox Ligands	135
6.2	2.1 Synthesis of Phenyl C5-Substituted Borabox Ligand	15
6.2	2.2 Synthesis of Dialkyl C5-Substituted Borabox Ligands	136
6.2	2.3 Synthesis of Diaryl C5-Substituted Borabox Ligands	138
6.2	2.4 Synthesis of Hydroxyl-Substituted Borabox Ligand	141
6.2	2.5 C5-Substituted Borabox Ligands in Asymmetric Henry Reaction	143
6.3	Conclusion	145
7	Boron-Bridged Bis(oxazolines) and their Use in Copper-Catalyzed Asymmetric Reacti	ons 147
8	Experimental	153
8.1	Analytical Methods	153
8.2	Working Techniques	154
8.3	Diels-Alder Reaction	155
8.3	3.1 Synthesis of Dienophiles	155
8.3	3.2 Synthesis of Diels-Alder Adducts	158
8.4	Friedel-Crafts Reaction	167
8.5	Henry Reaction	168
8.6	Aza-Henry Reaction	200
8.7	Synthesis of Borabox Ligands	202
8.8	Synthesis of Borabox Complexes	237
9	Appendix	241
9.1	X-Ray Crystal Structures	241
		2.45