
INTRODUCTION

Are you the type of person that likes waiting at a red light? Do you enjoy being
stopped by uncoordinated signals? If not, you are invited to read on to find out how
the coordination of traffic signals can help to reduce delays and, thus, avoid having to
wait at red lights.

In urban areas there is a strong demand for transportation. Probably, the most
sustainable means of transportation are the public ones, like buses, trams or the under-
ground. Nevertheless, not all demands for transportation can be covered by the public
sector. A major part of the overall transportation in cities is composed of individual
drivers.

There are different ways to improve road traffic conditions in city areas. However,
infrastructural arrangements like broadening streets or even building new ones to cope
with increasing demands are often not an appropriate option, due to high costs or space
limitations. Instead, intelligent means of traffic control are required to solve today’s
road traffic problems, like high delays, narrow capacities or traffic jams.

When speaking of ways to control traffic, traffic lights or traffic signals are of pri-
mary importance. A clever adjustment of the signal settings surely helps to reduce de-
lays and increase capacities, thereby avoiding traffic jams. Today, intelligent computer-
aided traffic control signals are even capable of reacting to different traffic situations.
Namely, they adapt their settings to the respective demands at the junctions.

However, there are traffic scenarios where the traffic responsive signals reach their
limit. For example, when there is constant and high traffic volume, the responsive
signals repeatedly apply similar control strategies. Therefore, they behave comparably
to fixed time traffic signals. These fixed time traffic signals repeatedly respond to
a prescribed signal timing program and not to the actual traffic conditions. Hence,
research into fixed time traffic signals and their control strategies is an ongoing endeavor.

Operating fixed time signals offers different means of controlling traffic. On the one
hand, some signal parameters’ adjustments influence the traffic flow locally at a single
junction. In many situations, such a local calibration of the signals turns out to be
sufficient to cope with the aforementioned problems. On the other hand, in situations
with constant high traffic, another non-local control strategy for the fixed time signals
becomes more significant: the coordination of the signals.

Coordinating traffic signals means the following: coupling of signals via a parameter
called offset. This quantity specifies how green phases of different signals are shifted
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(or offset) to each other. Most prominent coordination objectives are so-called “green
waves”, where vehicles travel without being impeded by a signal showing red. Neverthe-
less, when considering networks of signals instead of arterials of signals, it is often not
possible to adjust green waves for the whole network. Instead, the goal “green wave”
has to be replaced by a more practical term like “minimum possible delay”. Hereby,
the item “delay” refers to waiting times of vehicles facing red at the signals.

Many approaches and models have been proposed in order to find good coordinations
of signals in networks. Still, the majority of them reveal shortcomings either way, be
it unrealistic modeling of real-world circumstances or the fact that they do not give
guarantees for their solution quality.

To summarize, there is a need for a mathematical optimization approach for coor-
dinating fixed time traffic signals in networks.

This discussion on new required control strategies for fixed time signals is not a the-
oretical one. Rather, the industry, i.e., traffic companies that plan, manage, and control
traffic, demands applicable approaches for coordinating traffic signals in networks.

As an indication thereof, we briefly report on an industry project that emerged
between the TU Berlin and the PTV AG, which is a traffic planning software com-
pany from Karlsruhe, Germany. In this project, the aim was to develop mathematical
optimization software to coordinate fixed time traffic signals in networks. During the
project, we developed a mixed-integer linear programming approach, which minimizes
the delay of vehicles in a network by adjusting optimal offsets. However, several other
functionalities were incorporated in the model. The outcome of the project with the
PTV, though, is a concrete implementation of the optimization approach, which is
about to be included in PTV software soon.

In our mixed-integer linear program (MIP) for the coordination of traffic signals,
a particular physical constraint has been modeled. This constraint, which we will
therefore call “Cycle Constraint”, has to be formulated for all cycles � ∈ C of the
graph G that represents the network of signalized junctions. It suffices, however, to
state the cycle constraints for the elements of a cycle basis. This then implies these
constraints for all cycles of G. Depending on the respective application, though, it has
to be a cycle basis with a certain property. In our case of a MIP for coordinating fixed
time signals in networks one has to define the cycle constraints for the elements of an
integral cycle basis.

This means that any integral cycle basis can be used to define the cycle constraints
for our MIP. Although any two integral cycle bases lead to MIPs with equal optimal
objective value, the computational behavior of ‘their’ MIPs may be different. Observe
that this may be of importance, since we are considering networks of large size where
one may not come up with optimal solutions.

A quantity one can use to compare cycle bases is the so-called width of a basis.
Loosely speaking, the width of a basis is defined as the product—over all cycles of a
basis—of the number of possible values that the integer variable for the cycle constraint
for that cycle can take. Thus, the width of a basis gives an impression of the size of the
MIPs feasibility region. The hope is that the smaller the width of a basis, the better
the corresponding MIP performs.

Among the class of integral cycle bases strictly fundamental cycle bases are a promi-
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nent subclass. For a graph G = (V,E), a strictly fundamental cycle basis B is defined
by a spanning tree T of G. In particular, the cycles of B are exactly the ones induced
by non-tree edges of T with respect to the graph G. Then, in the Minimum Strictly
Fundamental Cycle Bases (MSFCB) problem one seeks a spanning tree T that induces
a basis of minimum length.

In 1982, Deo et al. [DKP82] proved the MSFCB problem to be NP-complete for gen-
eral graphs. Since then, many heuristics for the MSFCB problem have been proposed.
Nevertheless, for comparing the results of these heuristics, i.e., whenever concrete exper-
iments were conducted, sample graph classes were considered. Besides random graphs,
grid graphs are the most important such graph class.

Grid graphs are also of interest for the following two reasons. First, considering
the coordination of traffic signals, many real-world networks have a grid-like structure.
One only has to think of the layout of central areas in north american cities. Second,
for the MSFCB problem, grid graphs turn out to be computationally tricky. This fact
is probably due to an extreme amount of symmetric spanning trees on grids.

In 1995, Alon et al. [AKPW95] proved that for square grids with n vertices, the
size of an optimal solution to the MSFCB problem is in Θ(n log n). Still, we decided
to investigate bounds on the optimal value of an MSFCB on a square grid having the
form

c1 · n · log2 n − o(n log n) ≤ OPTn ≤ c2 · n · log2 n + o(n log n).

We could prove that the above statement is true for c1 = 1/12 and c2 = 0.979, respec-
tively.

An optimization problem that is closely related to the MSFCB problem is the one of
finding a tree t-spanner with minimal t, [CC95]. In this problem, one seeks a spanning
tree T for a given general graph G, such that the maximum over all pairs of vertices
(u, v) ∈ V ×V \{(v, v) | v ∈ V } of the ratio dT (u, v)/dG(u, v) is minimal. Here, dG(u, v)
refers to the length of a shortest path between u and v in G. The quantity dT (u, v)
denotes the length of the path between u and v in T .

The relation between finding a minimal tree t-spanner of a graph and an MSFCB
can be noticed when considering the following unified notation for tree spanner (UNTS)
problems. In the UNTS, a problem is defined through a triple

(goal, domain, term) .

Here, goal is either the maximum stretch or the average stretch. Second, as domain,
either all non-tree edges or all edges or all pairs of vertices are considered. Finally, term
may be one of the following four: dT (u, v) or dT (u, v)/dG(u, v) or dT (u, v) + w(e) or
dT (u, v)/w(e), with w(e) denoting a weight of an edge. Although not all combinations
of goal, domain and term are possible, there remain 20 tree spanner problems, classified
by the UNTS. Interestingly, these 20 notationally different problems collapse to 12 with
a general weight function w and to only five, when considering 0/1-weights on the edges.

Among these five problems that do not coincide even in the unweighted case, are—
besides the MSFCB problem—prominent optimization problems like the “Minimum
Average Stretch Spanning Tree Problem” [PT01], the “Shortest Total Path Length
Spanning Tree Problem” [DKP82, WCT00] and the “Minimum Diameter Spanning
Tree Problem” [HL02].
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Generally speaking, the UNTS provides a classification of related problems, which
had not been realized as such before. Hence, interconnections can be revealed and
properties like complexity status or inapproximability factors can be carried forward
between the problems.

The chronology of topics within this introductory part is reflected in the organization
of the thesis.

Outline of the Thesis

In Chapter 1, we investigate the Network Signal Coordination (NSC) problem. After a
short introduction of the most important traffic engineering terms related to traffic sig-
nals, we first examine a study of related work. In the case of the NSC problem this turns
out to be of importance in order to clearly restrain the problem from other optimiza-
tion tasks regarding traffic signals. Thereafter, we formally define the NSC problem
and report on similarities to the related “Periodic Event Scheduling Problem” (PESP).
Moreover, we take advantage of the PESP in order to prove the NSC problem to be
NP-complete. Then, in the main part of the chapter, we present a model for the NSC
problem. In particular, we develop in detail a mixed-integer linear programming (MIP)
approach to solve the NSC problem. We conclude the chapter with a discussion of
possible applications in practice of an NSC model in general and the MIP approach in
particular.

In the mixed-integer linear programming formulation for the NSC problem, the sub-
problem of finding appropriate integral cycle bases arises. In Chapter 2, we consider
the problem of finding Minimum Strictly Fundamental Cycle Bases (MSFCB) on grid
graphs. In particular, we investigate lower and upper bounds for this problem. As for
the lower bounds, we consider both combinatorial approaches and mixed-integer linear
programming formulations of the problem that we enrich with several additional cuts.
Thereafter, we consider upper bounds for the MSFCB problem on grids. In particular,
we construct trees by making intensive use of recursively defined sub-structures. We
conclude the chapter with an experimental section in which we provide benchmark
results for the MSFCB problem on grids which help evaluating further research.

The MSFCB problem can be interpreted as a problem of finding a spanning tree that
minimizes the sum of path lengths between particular pairs of vertices in a given graph.
Interestingly, finding minimum average stretch tree spanners or min-max stretch tree
spanners of graphs can be interpreted in a very similar way. In Chapter 3, we provide
a classification of several problems that aim at finding spanning trees in a graph, which
minimize the average or the maximum value of certain distances between particular
pairs of vertices in a graph. We propose a unified notation for these problems, which
include several prominent problems in combinatorial optimization. With this notation
at hand, we identify all coincidences and anti-coincidences of these problems. Moreover,
we provide a missing complexity status for one of the problems and observe that an
inapproximability result of one of the problems can in fact be applied to another problem
too, where it had previously been unknown.
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In Chapter 4, the experimental work that is related to the Network Signal Co-
ordination (NSC) problem is presented, thereby coming full circle back to the first
chapter. The experiments conducted are threefold: First, we perform a solver com-
parison at some example instances for our MIP model. Here, we compare the MIP
solvers CPLEX, MOPS, and SCIP with respect to their ability to find good solutions
in short time. In particular, we run two series of experiments using once the default
MIP solver settings and once settings that emphasize the finding of good primal solu-
tions. Second, we report on the influence of cycle bases to the computational behavior
of the MIP for the NSC problem. This experiment is of general interest, because a
positive influence of short bases on computation times of mixed-integer programming
formulations of practical applications is expected although very few studies actually
proved it. So, in particular, we investigate the correlation between the width of a cycle
basis and the lower bound obtained by a MIP computation of 10 seconds. Finally, the
third series of experiments is probably the most important one: we evaluate our model
by carrying out case studies. Namely, we consider the real-world inner city networks of
Portland and Denver and compare the results obtained by our optimization approach
with results found by other means. For these comparisons, we use the microsimulation
tool VISSIM.

How to read this thesis

The thesis is chronological in structure. However, the chapters can be followed indepen-
dently, too. Chapter 2 and Chapter 3 come with their own introduction and consider
related, but individually presented, problems. Furthermore, these two chapters do not
explicitly require the reading of the Chapters 1 and 4. On the other hand, the Chap-
ters 1 and 4 are strongly related and we recommend that Chapter 1 is read prior to
Chapter 4.

Moreover, we give a chapter outline at the beginning of each chapter. Also, conclu-
sions are drawn and open questions are raised at the end of each chapter.

A further remark

We assume the reader of this thesis to be familiar with the basic concepts in linear and
integer programming, graph theory, and complexity theory. For additional information
on linear and integer programming we refer to [Sch86, NW88]. Good textbooks on
graph theory are for example [Wes96] and [Die00]. Moreover, concepts in complexity
theory that are necessary to follow this thesis are covered by [GJ79] and [HO02].

As for the parts that deal with traffic engineering concepts or with traffic signal
terms in particular, we refer to Section 1.1.1 for short textual explanations of the most
important terms. Herewith, following most parts of Chapter 1 and Chapter 4 should
be unproblematic. Of course, while developing our mixed-linear integer program in
Section 1.3, we give formal definitions of all relevant terms, too. However, additional
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information can be found in“Richtlinien für Lichtsignalanlagen RiLSA, Lichtzeichenan-
lagen für den Straßenverkehr” [ril92] and in the “Highway Capacity Manual” [hcm00].



1
THE NETWORK SIGNAL COORDINATION

PROBLEM

In this chapter, we consider the Network Signal Coordination (NSC) problem. The
NSC problem was introduced in 1975 by Gartner et al. [GLG75a], though many similar
optimization tasks were known and have been defined already a lot earlier. After a
brief summary of the most important terms concerning traffic signals in Section 1.1.1,
we give a short overview of the most significant optimization problems on traffic signals
in Sec. 1.1.2, also to be able to clearly define the NSC problem and to restrict it from
other problems. Then, in Sec. 1.2.1 we formally define the NSC problem and illuminate
similarities to the Periodic Event Scheduling Problem (PESP) in Section 1.2.2. We
report on the complexity of the NSC problem in Section 1.2.3. Thereafter, in Sec. 1.3
we develop in detail a revised mixed-integer linear programming (MIP) formulation for
the NSC problem. Finally, we explain a possible application of our MIP in practice,
see Section 1.4. Parts of this chapter were published in [MNW06].

1.1 Introduction to Coordination of Signals in Networks

Before we define the Network Signal Coordination Problem, we introduce the most
important terms related to traffic signals and give an overview of what kinds of opti-
mization tasks concerning traffic signals have been considered so far. Other surveys on
the topic are provided for example by [SS95, tft] or contained in [Läm07].

1.1.1 The Language of Traffic Signals

There is no unique language in the field of traffic engineering in general, and neither
in topics related to traffic signals. Rather, the terms and notation depend on the
respective country and language. However, since following this thesis requires only
basic knowledge of traffic terms, in this section we give only a short textual description
of the most important terms. Notice that we do not give formal definitions here. For
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those, we refer to section 1.3. Nevertheless, whenever it is possible, i.e., when we do
not work with a term, but only want to give an intuition, we omit a formal definition
at all. For complete information see [hcm00] and [ril92].

In traffic engineering one considers traffic, i.e., vehicles, moving through a single and
isolated junction, an arterial, which is a, possibly bi-directionally traversable, series
of junctions, or through a whole network, i.e., an arbitrary set of junctions. Then, one
distinguishes different types of signals at the junctions. Here, the term signal refers
to all signaling devices at a junction. Roughly speaking, the following two types are
the most important ones. On the one hand, there are traffic responsive signals. At
these signals, the signal settings react on the present traffic. On the other hand, fixed-
time (controlled) signals do not react on the actual traffic. Here, after a prescribed
time span, called cycle length, the pattern of red phase and green phase repeats. The
particular division of a cycle length into a red and a green is referred to as (red green)
split. At a fixed-time signal, there are usually different signal groups that control the
traffic for particular directions. The green phases of different signal groups are shifted
against each other, since they usually control competing traffic streams. In addition,
the order of the signal groups at a signal is called phase sequencing. See Fig. 1.3 on
page 19 for an example of a signal timing plan in which the relevant data for one
fixed-time traffic signal is merged.

A very important term is the one of an offset. The (inter node) offset determines
how different signals are operated or shifted relatively to each other. That means the
following: at each signal there is a marked out reference point, which sometimes is
the begin of the green phase of the first signal group. Then, the offset denotes the
time span between reference points of two signals at two consecutive junctions. In this
case, there is an offset for each pair of consecutive signals. However, the offset can
also be defined for one single signal. Then, it determines the time span between this
signal’s reference point and a given network-wide zero reference point. See Figure 1.4
for an illustration of both types of offsets. A sketch of the intra-node offset, which
determines the shifting of different signal groups at one signal, is depicted in Figure 1.5
for example.

Of course, when considering signalized junctions, arterials or networks, several opti-
mization tasks come to mind. Generally, one is interested in optimizing signal settings
in order to achieve a certain goal. Such signal settings are the red green split, the phase
sequencing, the cycle length, and the offset. As for the goals to achieve, for example,
minimizing the delay or maximizing the bandwidth have to be mentioned. Here, the
term delay refers to the delay that is due to the signalization, i.e., delay that occurs
when vehicles have to wait because of a red. On the other hand, maximizing bandwidth
means that the signals along an arterial or within a network are adjusted, such that a
preferably wide possible corridor through the green phases of consecutive signals exists,
within which the vehicles do not have to stop at the signals at all. Such a corridor is
sometimes called a greenband. See Figure 1.1 for a visualization of greenbands.

Whenever the offsets are included in the signal settings to be optimized, we say
that we optimize the coordination. In the literature the term synchronization is
sometimes used synonymously. However, we prefer the term coordination and leave the
item synchronization to cases where the offsets and the cycle length are optimized.

When considering traffic flow one distinguishes between a microscopic view and
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a macroscopic view. The model is said to be microscopic if each individual vehicle
is considered. On the contrary, we speak of a macroscopic model or approach, if the
vehicles are aggregated in some sense. For example, it is popular to consider platoons
of vehicles, that is, groups of consecutive vehicles close together that are treated as one
quantity. However, it has to be mentioned that there are traffic models for which a
classification into one of the two views is not obvious.

1.1.2 Optimizing Traffic Lights

Since the introduction of automatic traffic signals in the 1920s, much work and research
has been done on modeling, analyzing, and later also on simulating and optimizing traf-
fic signals. In this section we mention the most important modeling and optimization
approaches. Notice, however, that we do not claim to provide a complete overview.

When talking about optimization in the context of traffic signals, one faces many
different optimization tasks. Table 1.1 gives a glimpse of possible differentiations be-
tween them.

Table 1.1: The table provides criteria to distinguish between mathematical approaches
for problems dealing with traffic signals. Observe, however, that not all combinations
are reasonable.

Criteria Possibilities

type of approach optimization, heuristic (genetic algorithms,
local search etc.)

variables offset, red-green split, cycle length, phase se-
quencing, travel speed, routes, almost any
combination thereof

objective minimizing delay, number of stops, fuel con-
sumption; maximizing greenband; combina-
tions thereof

type of signal fixed-time signals, traffic responsive signals,
both

type of approach theoretical, practical
application on single junctions, arterials, networks
preconditions on traffic public only, individual only, none
preconditions on demand high demand only, low demand only, none
preconditions on signaliza-
tion

common cycle length, none

modeling perspective macroscopic, microscopic

One of the first important scientific publications on traffic signals was by Web-
ster [Web58] in 1958. In this pioneering work, he prepared the ground for analyzing
single traffic signals, e.g., by providing delay-estimating formulae that are, in a slightly
changed form, still in use today. Using this formulae, Webster also researched on min-
imizing the delay by adjusting optimal green proportions at a signal.


