
Chapter 1

Fundamentals of grain boundaries
and triple junctions

1.1 Grain boundaries

The tremendous properties of crystalline metallic materials are based
on their inherent defects. Without those crystal defects, this class of ma-
terials would not have their great success as functional and constructional
materials. The broad spectrum of defects is mainly categorized by its di-
mension. One of the longest known and most important defects in metals
is the grain boundary, a two-dimensional planar defect, which separates
two crystal domains of the same crystallographic structure but of differ-
ent orientation. Since any crystalline material, except for single crystals, is
granular-structured in regions of different orientations, grain boundaries are
the fundamental defect in polycrystalline materials and, therefore, tremen-
dously influence their properties.

Although grain boundaries have already been known since the end of the
19th century [1], there is very little fundamental knowledge of grain bound-
aries due to their complex structure which requires advanced mathematical
description tools.

1.1.1 Terminology

In a three-dimensional system, a grain boundary has eight degrees of
freedom and therefore eight independent parameters are necessary to give
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a mathematically exact definition of a grain boundary. Three parameters
are required to define the orientation relationship between the two adja-
cent grains, which is commonly presented either by a Euler angle triplet
(ϕ1, Φ, ϕ2), by Miller indices or by an angle-axis pair in the Rodrigues-
Frank space [2, 3]. Since the last is most appropriate for this work, a short
introduction will be given to the Frank-Rodrigues representation in one of
the next sections.

Apart from the misorientation information; two parameters are required
to determine the spatial orientation of the grain boundary plane, i.e. bound-
ary inclination, by means of the normalized crystallographic normal vector
of the plane of inclination n = (n1, n2, n3) with respect to one of the adja-
cent grains. In addition to these five macroscopic parameters there are three
independent microscopic values of the translational vector t = (t1, t2, t3).
Basically, all intrinsic properties of the grain boundary, in particular mobil-
ity and energy, are functions of these eight parameters. The five macroscopic
parameters can be influenced externally, whereas the translational vector t
is determined by the crystal with respect to a minimum of the total energy.

To determine the dependency of the grain boundary properties, e.g. en-
ergy, on the five macroscopic parameters, it would be necessary to keep all
but one degree of freedom constant and to systematically vary that free
parameter. In realistic experimental setups only one set of parameters can
be kept constant. The most common way of investigation is to change the
orientation relationship in terms of a fixed axis of rotation and variation of
the rotation angle under the constraints of a constant plane of inclination
with respect to a reference point or vice versa.

However, in literature [4] it has been recently reported that grain bound-
ary free energy distribution was measured as a function of all five macro-
scopic parameters, using a statistical approach, exploiting EBSD measure-
ments [5].

Presentation of Misorientations

The orientation relationship between two crystal lattices, mostly referred
to as misorientation, is a spatial transformation applied to one crystal in
order to let both crystal lattices coincide. Assuming a common origin for
both crystal lattices, this is a pure rotation of one crystal coordinate sys-
tem with respect to the other and can be simply described by a rotation
transformation matrix gm:
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{Ci} = gm{Cj} (1.1)

where {Ci} and {Cj} are the respective crystal coordinate systems.

Figure 1.1: Rotation of θ about
�r let crystal coordinate system 1
and crystal coordinate 2 coincide.

The simplest way to describe such a ro-
tation matrix is in terms of a rotation axis
<hkl>, which is common for both crystal
coordinate systems and a rotation angle θ
(Fig. 1.1), since it is in many instances of
major interest to know the influence of the
rotation angel on a grain boundary prop-
erty for a fixed rotation axis. Therefore, it
is desirable to keep the grain boundary in-
clination constant and consider only a ro-
tation angle dependency.

Based on this description, grain bound-
aries can be divided into three different classes. If the rotation axis is per-
pendicular to the grain boundary plane, the grain boundary is referred to as
twist boundary (Fig. 1.2a). In this special case, the grain boundary plane is
clearly defined and independent of the rotation angle. Figures 1.2b and 1.2c
show the grain boundary class, which is called tilt boundary, and has its
rotation axis within the grain boundary plane. For this class an infinite num-
ber of possible grain boundary planes for a given rotation angle exists. In
the case of a mirror symmetry between the two adjacent grains the bound-
ary is labeled as a symmetrical tilt grain boundary (Fig. 1.2b). All other
configurations are referred to as asymmetrical tilt boundaries (Fig. 1.2c).

Grain boundaries which do not fulfill either of the criteria of the first
two classes are termed mixed or random grain boundaries and consist of
mixed twist and tilt components.

Rodrigues-Frank Space

When reducing the classification of grain boundaries to a pure orienta-
tion relationship it is convenient to use the Rodrigues-Frank notification,
as already mentioned above [2, 3]. In that form of presentation the angle-
axis designation of the rotation matrix gm between two adjacent grains is
expressed as a three-dimensional vector �R which combines the angle θ and
axis �r of rotation into one mathematical entity:

�R = tan (θ/2)�r (1.2)
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Figure 1.2: Various types of grain boundaries: (a) twist grain boundary, (b) symmet-
rical tilt grain boundary, (c) asymmetrical tilt grain boundary [6]

The great advantage of this parametrization is that �R defines a vector
which lies in a Cartesian coordinate system whose axes correspond to the
crystal axes. The three dimensional space in which such populations of R-
vectors, corresponding to misorientations, are represented, is known as the
Rodrigues-Frank (RF) space. Since �R is directly derived from the angle/axis
pair, it can be described by a number of different crystallographic-related
solutions, depending on the crystal symmetry. The length of �R is a function
of θ and it is, thus, most convenient to choose that representative example
of the crystallographic-related solutions which corresponds to the smallest
misorientation and therefore lie closest to the origin. By using this smallest
angle description the RF space can be reduced to a limited polyhedral zone
around the origin containing all misorientations. This polyhedron is called
the fundamental zone of Rodrigues space and any R-vector lying outside
the fundamental zone can be re-expressed as an equivalent vector lying
within the zone by re-choosing the crystallographic-related solution with
the smallest angle.

The shape of the fundamental zone is fully governed by the crystal sym-
metry of the respective material. Fig. 1.3a shows the fundamental zone for
cubic symmetry. For convenience, the axis of the zone is aligned with the
crystal axis for the representation of misorientations. The fundamental zone
itself can be further subdivided into 48 subvolumes, each containing only
one representative for any crystallographic-related solution [8]. In the case
of an orthorhombic sample geometry, which is used throughout this work,
one eighth of the fundamental zone (Fig. 1.3b) already contains the full
information of all possible misorientations.

The most powerful aspect of the Rodrigues parametrization is its recti-
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Figure 1.3: Fundamental zone of Rodrigues space for cubic symmetry (a); further
reduction for orthorhombic sample geometry with sections through Rodrigues space per-
pendicular to the Z-axis (b) [7].

linear geometry, which simplifies its visualization and use:

• The axis of rotation manifests itself directly in the direction of �R.
Hence, rotations about the same crystallographic axis lie on a straight
line which intercepts the origin.

• The length of �R is given by the rotation angle. Thus, small angle grain
boundaries cluster close to the origin.

• Orientations including common directions, e.g. fibre textures, lie on
a straight line which does not necessarily intercept the origin. These
geodesic lines remain straight even if the origin of the space is shifted
[3, 9, 10].

• The edges of zones in RF space are straight lines, and the faces are
planar.

• The RF space is homochoric, i.e. a random texture will be distributed
uniformly throughout the space.

The features of the Rodrigues-Frank space above described are the essen-
tials for the general understanding and use of it. A more detailed description
and mathematical formalism can be found elsewhere [9, 10, 11, 12].
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1.1.2 Atomic structure of grain boundaries
Apart from the classification with respect to the misorientation descrip-

tion of grain boundaries, it is most common to distinguish between small
angle grain boundaries (SAGB) and large angle grain boundaries (LAGB)
taking into account the difference in the internal microstructural configura-
tion.

Small angle grain boundaries

If the angle of rotation between two adjacent grains is small enough
(SAGB), the grain boundary is entirely composed of a periodic crystal dis-
location arrangement. In the simple case of a symmetric <100> tilt bound-
ary in a simple cubic crystal the configuration consists of a single set of
edge dislocations with Burgers vector �b, where the dislocation spacing d is
directly correlated to the rotation angle θ (Fig. 1.4a):

|�b|
d

= 2sin
θ

2
(1.3)

With an increasing misorientation angle θ the spacing d decreases as shown
in Fig. 1.4b.

In the more general case of an asymmetric tilt grain boundary (Fig. 1.2c)
- rotation of the boundary plane out of its symmetric position by an inclina-
tion angle φ (Fig. 1.5b) - at least two sets of edge dislocations are required to
describe the boundary structure. The Burgers vectors of these two disloca-
tion sets must be perpendicular to each other (Fig. 1.5a) and with increasing
deviation φ from the symmetrical position the fraction of the second set of
dislocations (b2) must increase,

1
d2

=
|�b2|

θsinφ
(1.4)

whereas the fraction of dislocations with Burgers vector b1 decreases with
φ

1
d1

=
|�b1|

θcosφ
(1.5)

Small angle twist boundaries require two sets of screw dislocations and in
the most general case of mixed SAGBs the boundary structure is comprised
of dislocation networks of three Burgers vectors [13].
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Figure 1.4: (a) Dislocation configuration of a symmetrical tilt <100> SAGB in a
simple cubic crystal. (b) Measured and calculated dislocation spacing in a symmetrical
SAGB in Germanium [6]

Figure 1.5: (a) Lattice dislocation arrangement [6] and (b) rotation angle θ and
inclination φ of an asymmetric tilt SAGB [14]


