

#### Thomas Hilber (Autor) UPSWING: An advanced waste treatment concept compared to state-of-the-art



#### https://cuvillier.de/de/shop/publications/1498

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

### **Table of Content**

### 1. Introduction

| State-of-the-art waste disposal concepts           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Municipal Solid Waste Incineration (MSWI)          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Co-combustion of Solid Recovered Fuels (SRF)       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Combined processes                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The demand for alternative waste disposal concepts | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UPSWING as an advanced waste treatment concept     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Flue gas integration and partial flue gas cleaning | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Steam integration                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Expected benefits                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Field of application                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Methodology                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Problem definition and primary objective           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Approach and areas of concern                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    | State-of-the-art waste disposal concepts<br>Municipal Solid Waste Incineration (MSWI)<br>Co-combustion of Solid Recovered Fuels (SRF)<br>Combined processes<br>The demand for alternative waste disposal concepts<br>UPSWING as an advanced waste treatment concept<br>Flue gas integration and partial flue gas cleaning<br>Steam integration<br>Expected benefits<br>Field of application<br>Methodology<br>Problem definition and primary objective<br>Approach and areas of concern |

## 2. State of knowledge

| 2.1   | Modern Municipal Solid Waste Incineration                        | 11 |
|-------|------------------------------------------------------------------|----|
| 2.1.1 | Waste reception and storage                                      | 12 |
| 2.1.2 | Grate firing system, boiler and power production                 | 12 |
| 2.1.3 | Flue gas cleaning system                                         | 13 |
| 2.1.4 | Residue treatment                                                | 15 |
| 2.2   | Solid Recovered Fuel (SRF) production and utilisation            | 15 |
| 2.2.1 | Origin, production and thermal utilisation of SRF                | 16 |
| 2.2.2 | Definition of quality standards                                  | 16 |
| 2.2.3 | Current and expected SRF utilisation                             | 17 |
| 2.3   | Current situation of the European waste- and power market        | 18 |
| 2.3.1 | Waste potential and available qualities                          | 18 |
| 2.3.2 | Most important treatment and disposal routes                     | 19 |
| 2.3.3 | Current situation of fossil fuel utilisation in power production | 19 |
| 2.4   | Process-specific environmental regulations                       | 20 |
| 2.5   | Scope and content of this thesis                                 | 20 |

# 3. Process verification requirements

| 3.1   | The UPSWING process                                            | 22 |
|-------|----------------------------------------------------------------|----|
| 3.1.1 | General characterisation of waste flue gases                   | 22 |
| 3.1.2 | Partial flue gas cleaning and residual pollutant concentration | 24 |
| 3.1.3 | Experimental setup and investigated fuels                      | 26 |
| 3.2   | Direct SRF co-combustion                                       | 29 |
| 3.2.1 | Characterisation of SRF materials                              | 29 |
| 3.2.2 | Experimental setup and investigated fuels                      | 31 |
| 3.3   | Summary and resulting chapter organisation                     | 32 |

# 4. Experimental equipment

| 11    | Electrically heated combustion reactor (BTS) | 33 |
|-------|----------------------------------------------|----|
| 4.1   | Electrically heated combustion feactor (DTS) | 55 |
| 4.1.1 | Dosing and fuel mixing                       | 34 |
| 4.1.2 | Gas sampling and analysis                    | 34 |
| 4.1.3 | Char and fly ash sampling                    | 34 |
| 4.1.4 | Fly ash removal system                       | 35 |
| 4.2   | Semi-technical combustion facility (KSVA)    | 35 |
| 4.2.1 | RES/SRF dosing and injection                 | 36 |
| 4.2.2 | Coal milling equipment                       | 37 |
| 4.3   | Electrically heated BFB/CFB reactor (ELWIRA) | 37 |
| 4.4   | Artificial waste flue gas generation         | 38 |
| 4.5   | Mercury measurements                         | 39 |
| 4.5.1 | Continuous mercury measurements (CMM)        | 39 |
| 4.5.2 | Discontinuous mercury measurements           | 40 |
| 4.6   | Hydrogen chlorine measurements               | 40 |
|       |                                              |    |

# 5. Experimental investigations and discussion

| 5.1   | Nitrogen oxides                                            | 41 |
|-------|------------------------------------------------------------|----|
| 5.2.1 | Emission behaviour of the UPSWING process                  | 42 |
| 5.1.2 | Process emissions during SRF co-combustion                 | 51 |
| 5.1.3 | Comparison and evaluation of results                       | 53 |
| 5.2   | Hydrogen chloride                                          | 54 |
| 5.2.1 | Fate of chlorine in the UPSWING process                    | 55 |
| 5.2.2 | Fate of chlorine during SRF co-combustion                  | 56 |
| 5.2.4 | Comparison and evaluation of results                       | 60 |
| 5.3   | Destruction of PCDD/F                                      | 61 |
| 5.3.1 | PCDD/F destruction potential of the UPSWING process        | 63 |
| 5.3.2 | PCDD/F destruction potential during SRF co-combustion      | 66 |
| 5.3.3 | Comparison and evaluation of results                       | 67 |
| 5.4   | Trace element behaviour                                    | 68 |
| 5.4.1 | Influence of waste flue gas integration on trace element   |    |
|       | behaviour                                                  | 71 |
| 5.4.2 | Influence of SRF co-combustion on trace element behaviour  | 77 |
| 5.4.3 | Comparison and evaluation of results                       | 82 |
| 5.5   | Fly ash quality and utilisation                            | 83 |
| 5.5.1 | Influence of waste flue gas integration on fly ash quality | 85 |
| 5.5.2 | Deterioration of power plant residues during SRF           |    |
|       | co-combustion                                              | 86 |
| 5.6.3 | Evaluation of fly ash quality according DIN/EN 450         | 88 |

#### 6. Evaluation of the full-scale process by numerical simulation

| 6.1   | Basic approach                                           | 89 |
|-------|----------------------------------------------------------|----|
| 6.2   | Model adaptation and validation                          | 91 |
| 6.3   | Evaluation of the best-suited flue gas injection concept | 93 |
| 6.3.1 | Simulation results                                       | 93 |
| 6.3.2 | Implementation of criteria for process evaluation        | 94 |
| 6.3.3 | Evaluation of simulation results                         | 95 |
| 6.4   | Determination of favourable process settings             | 95 |

#### 7. Summary and conclusions

| 7.1   | Environmental and operational aspects                 | 96  |
|-------|-------------------------------------------------------|-----|
| 7.2   | Further operational aspects                           | 98  |
| 7.2.1 | Waste flue gas integration / SRF handling and feeding | 99  |
| 7.2.2 | Heat recovery                                         | 99  |
| 7.2.3 | Flexibility of plant operation                        | 100 |
| 7.2.4 | Emergency situations                                  | 100 |
| 7.2.5 | Environmental regulation                              | 100 |
| 7.3   | Economical assessment                                 | 101 |
| 7.3.1 | Economical assessment of the UPSWING concept          | 101 |
| 7.3.2 | Economical assessment of direct SRF co-combustion     | 103 |
| 7.3.3 | Comparison of the investigated concepts               | 103 |
| 7.4   | Conclusions and future outlook                        | 104 |

#### Appendices

- A-1 Coal analysis
- A-2 SRF analysis
- B-0 Basic input/output balances
- B-1 Basic balances UPSWING
- B-2 Basic balances SRF co-combustion
- C-1 Combustion settings and trace elements UPSWING
- C-2 Combustion settings and trace elements SRF co-combustion
- D-1 Environmental regulations
- D-2 Analytical methods

Literature