
Introduction

In computer science, the main task is to study the structure of computational problems,
and possible algorithms to solve them. Recursion theory has provided many answers
to the question which of the problems appearing in a computer scientist’s every day
life can be solved with an algorithm, and, more importantly, which cannot. In fact, by a
simple argument comparing the number of possible algorithms and the number of possible
problems, it is evident that “most” problems cannot be solved by any algorithm at all.
Recursion theory also provided a suitable model for computation, which is independent
of whatever kind of computer hardware might be in fashion at a given date: the Turing
machine is both universal enough to serve as the general definition of a “computer,” and
simple enough for the researcher to prove results without too much technical reliance on
the model itself.

For problems appearing in practice, the answer “there is an algorithm to solve it” is
not entirely satisfying. Usually, we are interested in an algorithm solving the problem
at hand using as few resources as possible. Among the most important measurements of
resources are the time needed for the computation, and the memory used by an algorithm.
Therefore, questions like “is there an algorithm to solve this problem in a time which
is linear in the input length” become important. This is where complexity theory has
provided many answers, and, maybe as important, interesting questions.

One of the most basic questions that complexity theory considered was the question
how to define an efficient algorithm. The answer which is generally agreed on by people
working in the field today is the following: an algorithm is efficient if the time it needs to
perform its task on a Turing machine is polynomial in the length of its input. It can be
shown that this class is “robust,” meaning that if we study the class of problems solvable
on a “real” computer in polynomial time instead, we get the same class of problems.
Thus, the class P containing all problems with a polynomial-time algorithm is considered
to contain all problems which can be solved “efficiently.” In addition to this class, many
other complexity classes have been defined, which are meant to group problems where
the computational power required to solve them is similar. The question to determine
for some problem, in which complexity class it belongs, is therefore the same as asking
what resources we need to solve it.

It is obvious that positive results in the way of “there is an efficient algorithm to
solve problem A” can be shown by simply stating an algorithm for the problem at hand,
proving its correctness and analyzing its running time. But what about negative results,
proving that there is no efficient algorithm for a given problem? Results of this kind have
proven to be much more difficult to achieve. In fact, for many problems which are very
relevant in practice, it is unknown if an efficient algorithm can exist.



2 Introduction

To be able to compare the complexity of given problems, the notion of reductions was
introduced. In this way, even if we do not know if we can solve the problems A or B
efficiently, it is possible to prove statements like “either both A and B have an efficient
algorithm, or none of them has.” Using this concept, it was shown that many problems
appearing in practice are “equivalent” in a certain way: either all of them can be solved
by an efficient algorithm, or none can. These problems form the fundamental class of
NP-complete problems. The question if an efficient algorithm for this class of problems
exists is one way to phrase complexity theory’s most important open question: the “P-
NP”-problem. The first known mention of this problem is in a letter by Kurt Gödel
to John von Neumann, where he asks if there is a better method to prove first-order
formulas than simply testing all combinations. Despite considerable efforts by computer
scientists and mathematicians for more than 35 years, this question remains open. Most
researchers believe that the answer to it is “no,” and therefore to say that a problem is
NP-complete is now generally understood as meaning that there probably is no efficient
algorithm for it.

But what about cases “in between” efficiently-solvable and NP-complete? It is very
conceivable that there are problems which are “easier” than the NP-complete problems,
but still do not have an efficient algorithm. Under the assumption that the NP-complete
problems themselves cannot be solved efficiently, this, and in fact a much stronger result,
has been proven by Richard Ladner in [Lad75b]: there are infinitely many “degrees
of complexity” between P and NP. It is of interest that very few “natural” problems
appear to lie in these intermediate degrees. One of the well-known candidates for such
a problem is graph isomorphism, which is the problem to determine if two given graphs
are mathematically the same structure.

From the very beginning of the study of these problems, in fact starting withthe above-
mentioned letter by Gödel, propositional formulas lay at the heart of the discussion. One
of the most important problems in complexity theory is the satisfiability problem, which
is the following: given a propositional formula, determine if there is an assignment which
makes the formula true. For example, consider the formula

ϕ1 = x ∧ (y ∨ x).

This formula can easily seen to be satisfiable, by setting both variables x and y to
“true.” On the other hand, consider the formula

ϕ2 = (x ∨ y) ∧ (y ∨ z) ∧ x ∧ z.

This formula is not satisfiable: for any “true/false”-assignment to the variables x, y,
and z, the formula is false. The satisfiability problem seems like a simple enough ques-
tion to be solved by an algorithm: simply test all of the possible truth assignments to
the variables, and check if one of them makes the formula true. While this procedure
certainly is correct, it cannot be considered efficient: for a formula in which n variables
appear, there are 2n many possible truth assignments to the variables which need to be
tested. Assuming that a computer can test 1.000.000.000 assignments per second, this
would mean that for a formula with 1000 variables, the algorithm would roughly take
3 · 10284 years to check all possible assignments. Since formulas of this length do appear



Introduction 3

in practical settings, this obviously is not satisfactory. However, there are no known al-
gorithms which solve the problem significantly faster. The P-NP-problem can be stated
as the question if there is an algorithm which can do significantly better, i.e., perform
only a polynomial number of computation steps instead of the exponentially many tests
needed for the complete search algorithm described above.

Although we do not know how to solve this problem efficiently, for a satisfiable for-
mula, it is easy to “prove” that it is indeed satisfiable, by simply giving a satisfying
assignment, as we did above for the formula ϕ1. There are many problems which share
this characteristic. For another example, consider the Traveling Salesman Problem. Here
we are given a set of cities, a table of plane ticket costs for each city-to-city connection,
and a number c. Our task is to determine if there is a round-trip which costs at most c
Euros. Again, given such a round-trip, it is easy to check if it satisfies the cost bound.
But it seems to be difficult to answer the question if such a trip exists. This property
gives a characterization of the problems in the complexity class NP: we do not know how
to solve them efficiently, but there are short and easily verifiable “proofs” to show that
the answer to such a question is “yes.”

The satisfiability problem was the first problem proven to be NP-complete, by Stephen
Cook in [Coo71], and, independently, by Levin (a partial English translation of his result
can be found in [Tra84]). From that starting point on, literally thousands of problems
were proven to fall into this class, and entire books are devoted to proving these kinds of
results [GJ79]. The search for NP-complete problems is motivated by two main reasons.
First, if there is one problem of these which can be solved in polynomial time, then this
immediately gives efficient algorithms for all the NP-complete problems. Therefore, it was
hoped that if enough NP-complete problems were known, then there would be discovered
some problem which is both NP-complete and efficiently solvable, thus proving that
P=NP, and giving efficient algorithms for a vast number of practically relevant problems.
However, this has not happened, and in fact, most researchers now believe that it never
will, since there probably simply are no efficient algorithms for NP-complete problems.
But the search for NP-complete problems still remains interesting: when analyzing the
complexity of a problem occurring in practice, in order to prove that it is NP-complete, it
is useful to have a problem as “similar as possible” to it for which completeness is known.
If for a practical problem we know that it is NP-complete, then we know that with
known algorithms and techniques, we cannot obtain an efficient solution, and we need to
consider approximation algorithms. Therefore, knowing many completeness results helps
to influence decisions in practical software design.

In the above mentioned Traveling Salesman Problem, the goal was to find a strategy
of visiting cities. In the satisfiability problem, we search for a strategy to assign truth
values to the variables. In both examples, there was no opponent we needed to take
into account. When we add possible opponents, and study problems in a game-theoretic
setting, then often problems which cannot be solved in NP anymore occur. Consider the
following “game:” We are given a propositional formula ϕ, where the occurring variables
are x1, . . . , xn. Player A starts to assign a value to the first variable, x1. Then player B
may choose a value for the variable x2, then it is A’s turn again and he determines the
value for x3, and so on, until every variable has been assigned a value. Player A (the
universal player) wins if the formula ϕ is false under this assignment, and player B (the



4 Introduction

existential player) wins if the formula is true. The question if player A or B have a
winning strategy in this game does not seem to be solvable in NP, because unlike with
short and easily-checkable assignments for a formula, there does not seem to be short way
to encode the strategies in this more general setting. The obvious approach would be to
write down every possible “reply” to the other player’s moves, but it is easy to see that
this results in a table with exponentially many entries in the number of rounds of the
game. Problems like these therefore lie in higher complexity classes - the classes arising
here are those forming the polynomial hierarchy , and the class PSPACE. The example
just discussed can be phrased as the validity problem for a quantified Boolean formula,
where the variables controlled by A are quantified with ∀, and the variables controlled
by B are quantified with ∃.

As mentioned, the class P is considered as the class of problems which can be solved
efficiently. It is obvious that there are different “degrees” of efficiency, and hence it is nat-
ural to study complexity classes below P. To this end, alternative models of computation
were introduced, allowing to obtain results on questions of efficient parallel algorithms,
and algorithms with low space usage. Both extensions of the Turing machine and dif-
ferent, circuit-based models were introduced, which allow natural definitions of various
complexity classes inside P. Similarly to the NP-complete problems, the notion of com-
pleteness for these classes was introduced to describe problems which are “among the
hardest” in them. Again, it turned out that satisfiability problems related to restricted
classes of Boolean formulas are typical examples for complete problems of these complex-
ity classes. Therefore, a systematic study of these restricted satisfiability problems is of
interest, to gain insight into those complexity classes with deep connections to Boolean
formulas.

There are two different systematic ways of phrasing the restrictions of propositional
formulas that we consider in this thesis. A propositional formula is usually defined to be
built of propositional variables, constants, and the operators ∧,∨, and ¬, representing
conjunction, disjunction, and negation. What happens if we remove one of them? It is
obvious that removing either ∧ or ∨ does not reduce the expressive power of the formulas,
since we can simulate one of them using the other and negation: x ∧ y is equivalent to
(x ∨ y), and analogously x∨y can be expressed as (x ∧ y). But what if we forbid negation?
It is easy to see that the satisfiability problem for negation-free formulas is much simpler
than the one for arbitrary formulas: We can simply set every variable occurring in a given
formula to 1, and if this assignment does not satisfy the formula, then no assignment will.
This problem is not only solvable by an efficient, i.e., a polynomial-time algorithm, but
there are efficient parallel algorithms for this problem, as we will see as an easy corollary
from the results in Chapter 2. But what about other possible operators, like implication?
Or the binary exclusive-or? In fact, we can introduce any Boolean function as an operator
allowed in propositional formulas. For each possible set of Boolean functions, this gives
a restriction of formulas: the class of formulas built using variables and these connectors.
Therefore, we can define an infinite number of possible restrictions in this way, and for
each of these restrictions, we obtain a new version of the satisfiability problem, each with
a potentially different complexity.

To consider an infinite set of problems, we need some structure on this set. One of
the most important results in the classification of the expressive power of these restricted



Introduction 5

formulas was Emil Post’s work regarding certain “closed classes of Boolean functions.”
He proved his results already in the 1920s, but his work was not published until 1941,
in [Pos41]. His results identify all the “classes of expressiveness” which can be generated
by Boolean formulas restricted in this way, and therefore allow for a systematic study of
restrictions of propositional formulas by limiting, or extending, the possible operators in
the way suggested above. His classification is now known as Post’s lattice.

One of the first known results applying Post’s work to complexity theory and the
study of satisfiability problems was achieved by Harry Lewis in [Lew79], where he ex-
amined the question which operators make the satisfiability problem NP-complete, and
which combinations give efficient algorithms. In particular, he showed that this problem
is “dichotomic:” the complexity degrees between NP-completeness and solvable in poly-
nomial time mentioned above do not appear here. Dichotomy results are very interesting
in complexity theory: for one, they show that the infinite class of problems in question
breaks down to finitely many, if we are only interested in their “complexity behaviors.”
In this way, it is shown that an infinite class of problems can be considered “the same”
from a computational point of view. Also, in many cases a dichotomy theorem demon-
strates the exact point where the problem gets difficult, and can therefore give a precise
description of the features which make the problems in question hard. Lewis’ work gives
a precise answer what kind of operators used in formulas make the problem “easy,” and
which make them NP-complete.

Another restriction is to remove one of the most important features from Boolean
formulas, which is nesting. A usual Boolean formula can be nested to any degree. By
only considering formulas in conjunctive normal form, the nesting degree is reduced
to a constant. These are formulas of the form C1 ∧ · · · ∧ Cn, where the “clauses” Ci
must be of a very simple and regular form. It turns out that if we allow arbitrary
clauses with up to three variables, the satisfiability problem for these formulas is still
NP-complete. If we restrict the number of variables appearing in each clause to 2, then
the problem is solvable in nondeterministic logarithmic space, which is a subclass of P.
But there are other possible restrictions on these clauses than just limiting the number
of variables allowed to occur. A systematic study of these restrictions is known as the
constraint satisfaction problem. In its non-uniform version, this problem studies so-called
Γ-formulas, where the appearing clauses must take the form of some “templates” defined
in a set Γ. For the Boolean case, Thomas Schaefer showed in [Sch78], that again, the
problem is dichotomic: such a problem either can be solved in polynomial time, or is
NP-complete. Surprisingly, this result can be proven by again applying Post’s lattice
mentioned above. Post’s classification is used indirectly here, with an interesting “Galois
connection” between Boolean functions and closure properties of the clauses allowed
in the language Γ. It can be shown that both of these restrictions can be phrased in
an algebraic context, and the lattices of closed sets that appear in both cases are dually
isomorphic. This means that Post’s analysis of the closed classes of Boolean functions also
gives us a complete list of cases to study in the constraint satisfaction setting. However,
this isomorphism does not seem to allow the direct transfer of complexity results from
one of the restrictions to the other.

Constraint satisfaction problems have very interesting theoretical properties, as their
dichotomic complexity behavior and the connections to universal algebra. But there also



6 Introduction

is a vast number of practical applications. Constraint satisfaction problems generalize
not only many well-studied cases of the satisfiability problem, but can be used to express
almost any combinatorial problem which can be phrased as a set of local conditions. For
example, constraint satisfaction problems play a role in database theory, electronic design
automation, scheduling problems, and many other computational settings. On the the-
oretical side, they generalize problems like graph colorings, graph search, various flavors
of satisfiability problems, and many more. Therefore, constraint satisfaction problems
can be seen as the “combinatorial core of complexity theory” [CKS01], and hence learn-
ing about constraint formulas gives us better insight into many of complexity theory’s
questions.

In this thesis, we study various forms and generalizations of the satisfiability problem,
which using the systematic restrictions explained above. In addition to the satisfiability
problem itself, we also consider the closely related problems of model checking, enumer-
ation, counting, and equivalence. The structure of the work is as follows: After recalling
prerequisites from the literature and proving some initial results about formulas and re-
lations of our own in Chapter 1, we start with considering formula restrictions in the
Post sense. One of the simplest possible questions which can be asked in this context is
the problem to determine if a given formula in which no variable appears is true. This
problem, called the formula value problem, can be seen as the most basic satisfiability
problem, where no assignment to the variables has to be considered, but a formula simply
has to be evaluated. This task is one of the most important ones arising in algorithms
dealing with propositional formulas. It turns out that this problem has efficient paral-
lel algorithms for all types of formulas that we consider, and again we show that if we
restrict the propositional operators appearing in the formula, the complexity of the prob-
lem decreases even further. Using Post’s lattice, we show that there is a finite number of
complexity classes such that for any choice of propositional operators, the formula value
problem is complete for one of these classes. While this is not a “dichotomy” in the
strictest sense, since there are more than two complexity cases arising here, it still shares
the properties of dichotomy results which make them so interesting: the complexity of
an infinite set of problems can be shown to only give complexities from a finite list.

In practice, knowing the actual solutions to a problem is often more interesting than
simply knowing whether at least one solution exists. In Chapter 3, we therefore turn
our attention to the problem of computing the set of satisfying assignments for a given
propositional formula. This is not a decision problem like the ones mentioned up to now,
where the answer to the question is simply “yes” or “no,” but a problem where the task
is to generate a set of assignments for a given formula. Hence, these problem cannot be
grouped into the usual complexity classes of decision problems, like P or NP. Instead, we
consider several notions of “efficient enumeration” suggested by David Johnson, Christos
Papadimitriou, and Mihalis Yannakakis in [JPY88]. Assuming P 6= NP, for each possible
restriction of propositional formulas, and each of the efficiency notions considered, we
answer the question if such an algorithm exists.

In the remainder of the thesis, we study problems for formulas restricted in the con-
straint satisfaction context. In Chapter 4, we refine Schaefer’s dichotomy theorem for
formulas in conjunctive normal form, and consider the subclasses of polynomial time. It
turns out that the Galois connection mentioned before has its limitations here: there are



Introduction 7

cases which have the same algebraic behavior, but lead to different degrees of complexity.
Hence we need to go beyond the classification provided by the algebraic properties, and
perform a finer analysis of the cases. It turns out that the problem still is dichotomic in
nature, revealing that each of these problems is equivalent to the standard “complete”
problems of standard complexity classes inside P. Finally, in Chapter 5, we consider
quantified constraint formulas. These are generalizations of the usual constraint formu-
las, where additionally the quantifiers ∃ and ∀ are allowed to occur. As hinted above,
such formulas can be used to describe settings where two opponents are working against
each other. It is well-known that adding these quantifiers to the formulas raises the
complexity of the involved decision problems significantly: the problems we consider in
this chapter are prototypical for the classes of the polynomial hierarchy, and for the
class PSPACE, containing all computational problems which can be solved in polyno-
mial space. We study various problems for these formulas: first, we consider the formula
evaluation problem in this context, and the closely related model checking problem. An-
other decision problem which is very interesting is the equivalence problem, where we
ask if two formulas have the same set of satisfying assignments. This question is very
important in practice, since it can be used to decide whether two given database queries
are equivalent, if a program behaves as its specification demands, or if two games have
the same winning strategies.

Finally, we consider the counting problem for these formulas, which is the task to
determine the number of satisfying assignments for a given formula. This problem arises
in practice when we want to determine the number of elements in a database which match
a given query. To study the complexity of these problems, counting complexity classes
have been introduced, which have a close relationship to the classes of decision problems.

In all of the problems considered in this thesis, we show dichotomy-like results, show-
ing that for an infinite set of problems, only a finite set of complexity classes arises, and
the problems turn out to be complete for these classes. Hence, among adding to the list
of complete problems for all kinds of classes, we show that all of these infinite classes
of problems break down into finitely many complexity cases. Therefore, from a compu-
tational point of view, there are only finitely many different problems in this context.
For the problems considered in Chapter 4, this can be made even stricter, as in fact we
can show that the problems only give rise to finitely many equivalence classes under the
much stronger notion of isomorphism.



8 Introduction

Publications

The material about bases for co-clones, i.e., the results presented in Table 1.2, the sur-
rounding discussion, and Lemma 1.5.6 previously appeared in [BRSV05]. Lemma 1.4.5
appeared in [Sch05], on which Chapter 2 is based. Chapter 4 previously appeared as
[ABI+05], and the results on counting and the QCSPk(Γ)-problem from Chapter 5 ap-
peared in the technical report [BBC+05]. Further results in that chapter contain unpub-
lished work with Michael Bauland, Nadia Creignou, and Heribert Vollmer. The results
from Chapter 3 are new.


